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Abstract. Motivated by social network data mining problems such as link pre-
diction and collaborative filtering, significant research effort has been devoted to
computing topological measures including the Katz score and the commute time.
Existing approaches typically approximate all pairwise relationships simultane-
ously. In this paper, we are interested in computing: the score for a single pair of
nodes, and the top-k nodes with the best scores from a given source node. For
the pairwise problem, we apply an iterative algorithm that computes upper and
lower bounds for the measures we seek. This algorithm exploits a relationship
between the Lanczos process and a quadrature rule. For the top-k problem, we
propose an algorithm that only accesses a small portion of the graph and is related
to techniques used in personalized PageRank computing. To test the scalability and
accuracy of our algorithms we experiment with three real-world networks and find
that these algorithms run in milliseconds to seconds without any preprocessing.

1 Introduction

The availability of large social networks and social interaction data (on movies, books,
music, etc) have caused people to ask: what can we learn by mining this wealth of data?
Measures of social relatedness play a fundamental role in answering this question. For
example, Liben-Nowell and Kleinberg [13] identify a variety of topological measures
as features for link prediction, the problem of predicting the likelihood of users/entities
forming social ties in the future, given the current state of the network. The measures they
studied fall into two categories — neighborhood-based measures and path-based measures.
The former are cheaper to compute, yet the latter are more effective at link prediction.
Katz scores [11] were among the best link predictors, and the commute time [6] also
performed well. Other uses of Katz scores and commute time are anomalous link
detection [18], recommendation [20], and clustering [19].

Katz scores measure the affinity between nodes via a weighted sum of the num-
ber of paths between them. Formally, the Katz score between node i and j is K;; =
Yoo, @lpaths,(x, y), where paths,(x, y) denotes the number of paths of length ¢ between
ito jand @ < 1 is an attenuation parameter. Let A be the symmetric adjacency matrix,
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and recall that (A%); ; is the number of paths between node i and j. Then for all pairs of
nodes,
K=aA+a*A*+---=(I-aA) ' =1,

where the series converges if @ < 1/]|Al,.

The hitting time from node i to j is the expected number of steps for a random
walk started at i to visit j, and the commute time between nodes is defined as the
sum of hitting times from i to j and from j to i. The hitting time may be expressed
using the row-stochastic transition matrix P with first-transition analysis: H;; = 0 and
Hij =1+ X PixHj. Unlike Katz, hitting time is not symmetric; but commute time
is by definition, since C = H + H”. Computing H and C via these definitions is not
straightforward, and using the graph Laplacian, L = D — A where D is the diagonal
matrix of degrees, provides another means of computing the commute time. With the
Laplacian, C; ; = Vol(G)(LZl. - 2sz + L;’j) where Vol(G) is the sum of elements in A and
L' is the pseudo-inverse of L [5].

Computing both of these measures between all pairs of nodes involves inverting a
matrix, i.e. (/ — @A)~! or L'. Standard algorithms for a matrix inverse require O(n*) time
and O(n?) memory and are inappropriate for a large network (see Section 2 for a brief
survey of existing alternatives). Inspired by applications in anomalous link detection and
recommendation [18, 20], we focus on computing only a single Katz score or commute
time and on computing the k most related nodes by Katz score.

In Section 3, we propose customized methods for the pairwise problems based on
the Lanczos/Stieltjes procedure [8]. We specialize it for the Katz and commute time
measures, providing a novel and useful application for the Lanczos/Stieltjes procedure.
In Section 4, we present an algorithm to approximate the strongest ties between a
given source node and its neighbors in terms of the Katz score (while we discuss the
case of commute time in the conclusion section). This algorithm are inspired by a
technique for personalized PageRank computing [14, 2, 3], though heavily adapted to
the Katz score. We evaluate these methods on three real-world networks and report the
results in Section 5. Our methods produce answers in seconds or milliseconds, whereas
preprocessing techniques may often take over 10 minutes.

We have made our codes and data available for others to reproduce our results:
http://stanford.edu/~dgleich/publications/2010/codes/fast-katz/.

2 Related Work

Most existing techniques to compute the Katz score and commute time determine the
scores among all pairs of nodes simultaneously [1, 24, 20]. These methods tend to involve
some preprocessing of the graph and a single, rather expensive, computation. In this
paper instead we focus on quick estimates of these measures between a single pair of
nodes and between a single node to all other nodes in the graph.

Standard techniques to approximate Katz scores include truncating the series ex-
pansion to paths of length less than €, [4,24] and low-rank approximation [13, 1].
(Note that computing these Katz scores between nodes is quite different from computing
Katz’s status index.) In general, these techniques for all the scores require more time
and memory than our approach, and we do not compare against them for this reason.

Sarkar and Moore [20] proposed an interesting and efficient approach for finding
approximate nearest neighbors with respect to a truncated version of the commute



time measure. In [21], Sarkar et al. use their truncated commute time measure for
link prediction over a collaboration graph and show that it outperforms personalized
PageRank [15]. Spielman and Srivastava [22] show how to approximate the effective
resistance of all edges (which is proportional to commute time) in O(m log n) time for a
graph with m edges and n nodes. These procedures all involve some preprocessing.
Recently Li et. al. studied pairwise approximations of SimRank scores [12].

3 Algorithms for Pairwise Score

Consider the Katz score and commute time between a single pair of nodes: K;; =
el (I —aA)'e; — 6;jand C;; = Vol(G)(e; — ¢j)" L' (e; — e;). In these expressions, ¢;
and e; are vectors of zeros with a 1 in the ith and jth position, respectively; and 6; ; is
the Kronecker delta function. A straightforward means of computing them is to solve
the linear system (I — aA)x = ¢; and (L + Lee’)y = e; — e;. Then K;; = el x - 6;;
and C;; = Vol(G)(e; — e j)Ty. This form of commute time follow after substituting
L' = (L + Lee”)™" — lee™ (see [19]). Solving these linear systems is an effective
method to compute only the pairwise scores. In what follows, we show how a technique
combining the Lanczos iteration and a quadrature rule produces the pairwise Katz score
and commute time score, as well as upper and lower bounds on the estimate. Our
technique is based on the methodology developed in [8, 9], which we describe below.

Note that for a < 1/||Allz, (I — @A) is symmetric positive definite, as is (L + %eeT).
Thus, the pairwise Katz score and the commute time score are related to the problem of
computing the bilinear form u? f(E)v where E is a symmetric positive definite matrix. In
the most general setting, « and v are given vectors and f is an analytic function on the
interval containing the eigenvalues of E. In the application to Katz scores and commute
time, f(E) = E~!. Note we need only consider u = v because

u! f(Eyo = §[ @+ o) FE)u +0) = (= v)] f(E)u - )], (1

Golub and Meurant [8, 9] introduced techniques for evaluating such bilinear forms.
They provided a solid mathematical framework and a rich collection of possible applica-
tions. These techniques are well known in the numerical linear algebra community, but
they do not seem to have been used in data mining problems. We utilize this methodology
to compute pairwise scores, which extends to a large-scale setting. The algorithm has
two main components: Gauss-type quadrature rules for evaluating definite integrals, and
the Lanczos algorithm for partial reduction to symmetric tridiagonal form.

Because E is symmetric positive definite, it has a unitary spectral decomposition,
E = QAQT, where Q is an orthogonal matrix whose columns are eigenvectors of E with
unity 2-norm, and A is a diagonal matrix with the eigenvalues of E along its diagonal.
We use this decomposition only for the derivation that follows — it is never explicitly
computed in our algorithm. Given this decomposition, for any analytic function f,

W f(Eyu = u" QF Q" u = f)i i,
i=1

where &t = QT u. The last sum can be thought of as a quadrature rule for computing the
Stieltjes integral

b
u' f(Eyu = f J(Ddy(). )



Here vy is a piecewise constant measure, which is monotonically increasing, and its
values depend directly on the eigenvalues of E; A denotes the set of all eigenvalues; y is
a discontinuous step function, each of whose pieces is a constant function. Specifically,
v(4) is identically zero if A < min; 4;(E), is equal to Zi‘:] ﬁ? if ; <A < A1, and is
equal to 3/, ﬁ? if 1 > max; 4(E).

The first of Golub and Meurant’s key insights is that we can compute an approx-
imation for an integral of the form (2) using a quadrature rule. The second insight is
that the Lanczos procedure constructs a tridiagonal matrix whose eigenvalues are the
quadrature nodes for the specific measure y, and u = e¢;. Since we use a quadrature
rule, an estimate of the error is readily available. More importantly, we can use variants
of the Gaussian integration formula to obtain both lower and upper bounds and “trap’
the value of the element of the inverse that we seek between these bounds. The ability
to estimate bounds for the value is powerful and provides effective stopping criteria
for the algorithm. It is important to note that such component-wise bounds cannot be
easily obtained if we were to extract the value of the element from a column of the
inverse, by solving the corresponding linear system. Indeed, typically for the solution of
a linear system, norm-wise bounds are available, but obtaining bounds pertaining to the
components of the solution is significantly more challenging and results of this sort are
harder to establish.

Algorithm 1 reproduces a consice procedure from [9] to estimate u” E~'u. The
input is a matrix E, a vector u, estimates of extremal eigenvalues of E, a and b, and a
number of iterations k. In practice we can use the infinity norm of the original matrix
as an estimate for b; this quantity is trivial to compute. The value of a is known to be
small and positive, and in our experiments we have it set to 10~*. (We note here that
dynamically varying alternatives exist but these were not necessary in our experiments.)
The algorithm computes b; and b;, lower and bounds for u’ E~'u. The core of the

b}

algorithm are steps 3-6, which are nothing but the Lanczos algorithm. In line 7 we
apply the summation for the quadrature formula. The computation needs to be done
for the upper bound as well as the lower bound; see lines 9 and 10. Line 11 computes
the required bounds that “trap” the required quadratic form from above and below. For
Katz we set E = (I — @A) and use (1) to get eiTE’lej by running the procedure twice and
transposing the upper and lower bounds due to the subtraction. For commute time we
approximate (¢; — ¢,) (L + (1/n)ee’ ) (e; — e;).

4 Top-k algorithms

In this section, we show how to adapt techniques for rapid personalized PageRank
computation [14, 2, 3] to the problem of computing the top-k largest Katz scores. These
algorithms exploit the graph structure by accessing the edges of individual vertices,
instead of accessing the graph via a matrix-vector product. They are “local” because
they only access the outlinks of a small set of vertices and need not explore the majority
of the graph. See the conclusions for a discussion of commute time and why we cannot
utilize this procedure for that measure.

The basis of the algorithm is a variant on the Richardson stationary method for
solving a linear system [23]. Given a linear system Ax = b, the Richardson iteration is
XD = 8 4 ) where r® = b — Ax® is the residual vector at the kth iteration and w
is an acceleration parameter. While updating x**1 is a linear time operation, computing
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the next residual requires another matrix-vector product. To take advantage of the graph
structure, the personalized PageRank algorithms [14, 2, 3] propose the following change:
do not update x**1) with the entire residual, and instead change only a single component
of x. Formally, K& D = 30 4 P i, where 7 is the Jjth component of the residual
vector. Now, computing the next residual involves accessing a single column of the

matrix A:

r&D = p— Ax*D = p - AP 4+ a)r;k)ej) =r® 4 wrg.k)Aej.

Suppose that r, x, and Ae; are sparse, then this update introduces only a small number of
new nonzeros into both x and the new residual r. Each column of A is sparse for most
graphs, and thus keeping the solution and residual sparse is a natural goal for graph
algorithms where the solution x is localized (i.e., many components of x can be rounded
to 0 without dramatically changing the solution). By choosing the element j based on
the largest entry in the sparse residual vector (maintained in a heap), this algorithm often
finds a good approximation to the largest entries of the solution vector x while accessing
only a small subset of the graph. Dropping the heap as in [2] yielded slightly worse
localization and thus we did not use it in these experiments.

For a particular node i in the graph, the Katz scores to the other nodes are given by
ki = [(I — @A)™" = I]e;. Let (I — @A)x = ¢;. Then k; = x — ;. We use the above process
with w = 1 to compute x. For this system, x and r are always positive, and the residual
converges to 0 geometrically if @ < 1/||E||;. We observe convergence empirically for
1/||E|l; < @ < 1/||Ell, and have a developed some theory to justify this result, but do
not have space to present it here. To terminate our algorithm, we wait until the largest
element in the residual is smaller than a specified tolerance, for example 1074



Table 1. Basic statistics about our datasets: number of nodes and edges, average degree, max
singular value (]|A||,) and size of the 2-core in vertices.

Graph Nodes Edges Avg Degree [|All2 2-core Size
dblp 93,156 178,145 3.82 39.5753 76,578
arxiv 86,376 517,563 11.98 99.3319 45,342
flickr 513,969 3,190,452 12.41 663.3587 233,395

S Empirical evaluation

Our experimental goals are: (i) to test the convergence speed; (ii) to measure the accuracy
and scalability of our algorithms; and (iii) to compare our algorithms against the conju-
gate gradient (CG) method. Recall our setting: we only want a single score or top-k set.
We use the CG iterative method as a reference point for our pairwise and top-k algorithms
because it provides solutions in the large scale case without any preprocessing, just like
our algorithms. As we previously mentioned, approaches based on preprocessing or
simultaneously computing all the scores take considerably longer but provide more
information. In the case of finding a small set of pairwise values, we leave finding the
trade-off between our fast pairwise algorithms and the all-at-once approaches to future
work.

Experiment settings. We implemented our methods in MarLaB and MaTLAB mex codes.
All computations and timings were done in Linux on a laptop with a Core2Duo T7200
processor (2 core, 2GHz) with 2GB of memory. We used three real-world networks for
our experiments: two citation-based networks based on publications databases, and one
social network. The dataset’ statistics are reported in Table 1.

Pairwise results. We begin by studying the accuracy of the pairwise algorithms for Katz
scores and commute times. For this task, we first compute a highly accurate answer
using the MiNREs method [7] to solve the corresponding linear systems: (I — aA)x = ¢;
for Katz and (L + }leer)x = (e; — ;) for commute time. We used a tolerance of 1078
in these solutions. Next, we run our pairwise method. Recall that using Algorithm 1
requires a lower-bound on the smallest eigenvalue of the matrix E. We use 10~* for this
bound. We terminate our algorithms when the relative change in the upper and lower
bounds is smaller than 10~* or the upper and lower bounds cross each other. We evaluate
the accuracy at each iteration of Algorithm 1. Because our approach to compute Katz
scores requires two applications of Algorithm 1, the work at each iteration takes two
matrix-vector products. As described in previous sections, our pairwise algorithm is
closely related to iterative methods for linear systems, but with the added benefit of
providing lower and upper bounds. As such, its convergence closely tracks that of the
conjugate gradient method, a standard iterative method. We terminate conjugate gradient
when the norm of the residual is smaller than 107*.

For convergence of the Katz scores, we use a value of « that makes B = [ — @A
nearly indefinite. Such a value produces the slowest convergence in our experience. The
particular value we use is @ = 1/(||All> + 1). For a single pair of nodes in arxiv, we show
how the upper and lower bounds “trap” the pairwise Katz scores in Figure 1 (top left).

T In the interest of space we provide processing details of the datasets in our web page:
http://stanford.edu/~dgleich/publications/2010/codes/fast-katz/.
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Fig. 1. Upper and lower bounds (top) and approximation error (bottom) for pairwise Katz on
arxiv (left), dblp (center), and flickr (right).

At iteration 13, the lower bound approaches the upper bound. Beyond this point the
algorithm converges quickly. Similar convergence results are produced for the other two
graphs. We show the convergence of both bounds to the exact solution in the bottom row.
Both the lower and upper bounds converge similarly.

In comparison with the conjugate gradient method, our pairwise algorithm takes
more matrix-vector products to converge. This happens because we must perform two
applications of Algorithm 1. However, the conjugate gradient method does not provide
upper and lower bounds on the element of the inverse, which our techniques do. The
forthcoming experiments with commute time illustrate a case where it is difficult to
terminate conjugate gradient early because of erratic convergence. For these problems,
we also evaluated techniques based on the Neumann series for I — @A, but those took
over 100 times as many iterations as conjugate gradient or our pairwise approach. The
Neumann series is the same algorithm used in [24] but customized for the linear system,
not the matrix inverse, which is a more appropriate comparison for the pairwise case.

In Figure 2, we show how commute time converges for the same pairs of nodes.
Again, the top row shows the convergence of the upper and lower bounds, and the
bottom row shows the convergence of the error. While Katz took only a few iterations,
computing pairwise commute times requires a few hundred iterations. A notable result
is that the lower-bound from the quadrature rule provides a more accurate estimate of
commute time than does the upper bound. See the curve of the lower bound in bottom
row of Figure 2. This observation suggests that using the lower bound as an approximate
solution is probably better for commute time.

Note that the relative error in the lower-bound produced by our algorithm is almost
identical to the relative error from CG. This behavior is expected in cases where the
largest eigenvalue of the matrix is well-separated from the remaining eigenvalues — a fact
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Fig. 2. Upper and lower bounds (top) and approximation error (bottom) for pairwise commute
time scores on arxiv (left), dblp (center), and flickr (right).

that holds for the Laplacians of our graphs. When this happens, the Lanczos procedure
underlying both our technique and CG quickly produces an accurate estimate of the
true largest eigenvalue, which in turn corrects the effect of our initial overestimate of
the largest eigenvalue. (Recall from Algorithm 1 that the estimate of b is present in the
computation of the lower-bound b;.)

Here, the conjugate gradient method suffers two problems. First, because CG does
not provide bounds on the score, it is not possible to terminate it until the residual is
small. Thus, the conjugate gradient method requires about twice as many iterations as
our pairwise algorithms. Note, however, this result is simply a matter of detecting when
to stop — both conjugate gradient and our lower-bound produce similar relative errors
for the same work. Second, the relative error for conjugate gradient displays erratic
behavior. Such behavior is not unexpected, because conjugate gradient optimizes the
A-norm of the solution error and it is not guaranteed to provide smooth convergence in
the norm of the residual. These oscillations make early termination of the CG algorithm
problematic, whereas no such issues occur for the upper and lower bounds from our
pairwise algorithms.

Top-k results. We now proceed to a similar investigation of the top-k algorithms for
Katz scores. In this section, we are concerned with the convergence of the set of top-k
results. Thus, we evaluate each algorithm in terms of the precision between the top-k
results generated by our algorithms and the exact top-k set produced by solving the
linear system. Natural alternatives are other iterative methods and specialized direct
methods that exploit sparsity. The latter — including approaches such as truncated
commute time [20] — are beyond the scope of this work, since they require a different
computational treatment in terms of caching and parallelization. Thus, we again use
conjugate gradient (CG) as an example of iterative methods.



Let T;lg be the top-k set from our algorithm and T be the exact top-k set. The

precision at k is ITZllg NT[|/k, where || denotes cardinality. We also look at the Kendall-7
correlation coeflicient between our algorithm’s results and the exact top-k set. This
experiment will let us evaluate whether the algorithm is ordering the true set of top-k
results correctly. Let x;ig be the scores from our algorithm on the exact top-k set, and let

X;. be the true top-k scores. The 7 coefficients are computed between le*g and x7.. Both
of these measures should tend to 1 as we increase the work in our algorithms. However,
some of the exact top-k results contain tied values. Our algorithm has trouble capturing
precisely tied values and the effect is that our Kendall-7 score does not always tend to 1
exactly.

To compare with the pairwise results, we present the algorithm performance in
effective matrix-vector products. An effective matrix-vector product corresponds to our
algorithm examining the same number of edges as a matrix-vector product. In other
words, suppose the algorithm accesses a total of 80 neighbors in a graph with 16 edges.
Then this instance corresponds to (80/16)/2 = 2.5 effective matrix vector products.

For our first set of tests, we let the algorithm run for a prescribed number of steps
and evaluate the results at the end. In Figure 3, we plot the convergence of the top-k set
for k = 10,25, 100, and 1000 for a single node. The top figures plot the precision at k,
and the bottom figures plot the Kendall-7 correlation with the exact top-k set. Both of
these measures trend to 1 quickly. In fact, the top-25 set is nearly converged after the
equivalent of a single matrix-vector product — equivalent to just one iteration of the CG
algorithm. We show results from the conjugate gradient method for the top-25 set after
2,5,10, 15,25, and 50 matrix-vector products.

On the dblp graph, the top-k algorithm produces almost the exact Katz top-k set with
just slightly more than 1 effective matrix-vector product. For f1ickr, we see a striking
transition around 1 effective matrix-vector product, when it seems to suddenly “lock”
the top-k sets, then slowly adjust their order. In all of the experiments, the CG algorithm
does not provide any useful information until it converges. Our top-k algorithm produces
useful partial information in much less work and time.

Runtime. Finally, we present the runtime of our pairwise and top-k methods in Table 2.
We explore two values of a for Katz:

easy-a 1/(10]|All; + 10)
hard-a 1/(max(1(A)) + 1).

The former should converge more quickly than the latter. In the pairwise case, we
evaluate the the runtime on three pairs of nodes. These pairs were chosen such that there
was a high degree-high degree pair, a high degree-low degree pair, and a low degree-low
degree pair. For these, we use the shorthand high-high pair, etc. The results show the
impact of these choices. As expected, the easy-a cases converged faster and commute
time converged slower than either Katz score. In this small sample, the degree of the
pairs played a role. On flickr, for example, the low-low pair converged fastest for Katz,
whereas the high-low pair converged fastest for commute time. The solution tolerance
was 10~*. We do not report separate computation times for the conjugate gradient method,
but note that the previous experiments suggest it should take about half the time for
the Katz problems and about twice as long for the commute time experiments. In the
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Fig. 3. Precision (top) and Kendall-7 correlation (bottom) for top-k Katz time scores on arxiv
(left), dblp (center), and flickr (right). We use the same value of « as Figure 1.

top-k problems, we start the algorithm at one of the vertices among the same pairs of
nodes. We terminate it when the largest element in the residual vector is smaller than
10~*ad,,, where d,, is the degree of the source node. For most of the experiments, this
setting produced a 2-norm residual smaller than 107, which is the same convergence
criterion for CG.

6 Conclusions and Future Work

Measures based on ensembles of paths such as the Katz score and the commute time
have been found useful in several applications such as link prediction and collaborative
filtering. In this paper, motivated by applications, we focused on two problems related to
fast approximations for these scores. First, for finding the score between a specified pair
of nodes, we have proposed an efficient algorithm to compute it and also obtain upper
and lower bounds, making use of a technique for computing bilinear forms. Second,
for finding the top-k nodes that have the highest Katz scores with respect to a given
source node, we have proposed a top-k algorithm based on a variant of the Richardson
stationary method used in personalized PageRank.

We have conducted a set of experiments on three real-world datasets and obtained
many encouraging results. Our experiments demonstrate the scalability of the proposed
method to large networks, without giving up much accuracy with respect to the direct
methods (that are infeasible on large networks).

There are many possible extensions of our techniques. For example, the algorithm
we propose for computing the Katz and commute time between a given pair of nodes
extends to the case where one wants to find the aggregate score between a node and a
set of nodes. This could be useful in methods that find clusters using commute time [16,



Table 2. Runtime (in seconds) of the pairwise (left) and top-k (right) algorithms for Katz scores
and commute time. See the text for a description of the cases.

Graph Pairs Score
Katz Commute Graph Degree Katz
easy-o  hard-a easy-o  hard-a
arxiv High, high 0.6081  2.6902  24.8874 arxiv High 0.0027 0.2334
High, low 0.6068 23689  19.7079 Low 0.0003  0.2815
Low, low 0.3619  0.5842  10.7421 Low 0.0004 0.5315
dblp High, high 0.3266 1.7044  10.3836 dblp High 0.0012 0.0163
High, low 0.3436 13010  8.8664 Low 0.0011 0.0161
Low, low 0.2133  0.5458  8.3463 Low 0.0007 0.0173
flickr High, high 5.1061 12.7508 227.2851  flickr High 0.0741  0.0835
High, low 4.2578  11.0659 82.0949 Low 0.0036  36.2140
Low, low 2.6037  3.4782  172.5125 Low 0.0040  0.0063

17,25]. In these cases, the commute time between a node and a group of nodes (e.g., a
cluster) measures their affinity. We plan to explore this generalization in future work.

Furthermore, in link prediction, anomalous link detection, and recommendation, the
underlying graph is dynamic and evolving in time. These tasks require almost real-time
computation because the results should reflect the latest state of the network, not the
results of an offline cached computation. Therefore, calculation of these metrics must be
as fast as possible. We hope to evaluate our algorithms in such a dynamic setting, where
we believe they should fit nicely because of the fast computation and preprocessing-free
nature. An alternative is to combine some offline processing with techniques to get
fast online estimates of the scores. These techniques invariably involve a compromise
between scalability of the approach (e.g., computing a matrix factorization offline) and
the complexity of implementation (see [10, 3] for examples in personalized PageRank).

One key weakness of our current top-k algorithms is that they do no apply to esti-
mating the closest commute time neighbors. This problem arises because the expression
for all the commute times relative to a given node involves all of the diagonal entries of
the matrix inverse, whereas the top-k algorithm only finds an approximation to a single
linear system. We are currently investigating a diffusion-based measure that is inspired
by commute time and can be used with our Richardson technique. Preliminary results
show good agreement between the k closest nodes using commute time and the top-k set
of the diffusion measure.
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