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ABSTRACT

Uncertain, or probabilistic, graphs have been increaginged to
represent noisy linked data in many emerging applicati@nac
ios, and have recently attracted the attention of the da&aba:
search community. A fundamental problem on uncertain gragh
reliability, which deals with the probability of nodes being reach-
able one from another. Existing literature has exclusivetused
on reliability detection which asks to compute the probability that
two given nodes are connected.

In this paper we studyeliability searchon uncertain graphs,
which we define as the problem of computing all nodes reach-
able from a set of query nodes with probability no less than a
given threshold. Existing reliability-detection apprbas are not
well-suited to efficiently handle the reliability-searctoplem. We
proposeRQ-tree, a novel index which is based on a hierarchical
clustering of the nodes in the graph, and further optimizédgia
balanced-minimum-cut criterion. Based B®-tree, we define a
fast filtering-and-verification online query-evaluatidanasegy that
relies on a maximum-flow-based candidate-generation pffialse
lowed by a verification phase consisting of either a lowaurtzbng
method or a sampling technique. The first verification mettead
turns no incorrect nodes, thus guaranteeing perfect poacisom-
pletely avoids sampling, and is more efficient. The seconmifica-
tion method ensures instead better recall.

Extensive experiments on real-world uncertain graphs ghatv
our methods are very efficient—over state-of-the-art bditg-
detection methods, we obtain a speed-up up to five ordersgriima
tude; as well as accurate—our technigues achieve precisiaf5
and recall usually higher than75.

1. INTRODUCTION

Graphs are a ubiquitous model to represent objects and éheir
tions. In many applications, uncertainty is inherent indlaéa due
to a variety of reasons, such as noisy measurements [2feide
and prediction models [1, 26], or explicit manipulationg.e for
privacy purposes [8]. In these cases, data is representalas
certain graph also calledprobabilistic graph i.e., a graph whose
arcs are accompanied with a probability of existence.
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A fundamental problem in uncertain graphs is the so-cated
liability problem, which asks to estimate the probability that two
given (sets of) nodes are reachable. Reliability has bedh we
studied in the context of device networks (e.g., telecomioation
networks): networks whose nodes are electronic deviceshand
(physical) links between such devices have a probabilitjadf
ure [3]. More recently, the attention has been shifted teokind
of networks that can naturally be represented as uncertajphg,
such as social networks or biological networks [20, 28, 34].

The reliability problems studied so far in the literaturgluding
all works on device-network reliability, fall into the gemaé class
of reliability detection Specific problem formulations in this class
ask to measure the probability that a certain reliabilitgreévoc-
curs, e.g., what is the probability that two given nodes ane-c
nected fwo-terminalreliability [3]), all nodes in the network are
pairwise connecteda(l-terminal reliability [31]), or all nodes in a
given subset are pairwise connectéet¢rminal reliability [18]).

In this work we depart from the existing literature and foons
the problem ofreliability search which, to the best of our knowl-
edge, has never been considered so far: given a probahilégt-
oldn € (0,1) and a set of source nodés find all nodes that are
reachable front with probability no less than.

Applications. Reliability search naturally arises in a variety of sce-
narios. In the problem known asfluence maximizatignwhose
main application isviral marketing[23], the probability of an arc
(u,v) represents the influence thatexerts onw, i.e., the likeli-
hood that some action af will be adopted by, or the likelihood
that information propagates fromto v. An important, as well as
the most computationally expensive step common to stathesf
art methods, is to determine all nodes that can be influenged b
a givensetof nodes, whose computation is based on the iterative
execution of reliability-search queries, as shown in $ecti.7.

In protein-interaction networks [5] nodes represent pnstend
arcs represeninteractionsamong them. Interactions are estab-
lished for a limited number of proteins, through noisy ander
prone experiments. Thus, each arc is typically associatédav
probability accounting for the existence of the interaation this
context, predicting co-complex memberships [5, 25], and ime
teractions [28, 30] require to compute all proteins thaesrdently
(i.e., with high probability) reachable from a core (sogrset of
proteins: this operation exactly corresponds to runniredialility-
search query using the core proteins as source nodes.

In mobile ad-hoc networks the connectivity between nodes-s
timated using noisy measurements, thus leading to linksraiiy
associated with a probability of existence. In these nets/the
notion of “delivery probability” is usually exploited to termine
the nodes for which the probability of receiving a packet by a
other node in the network is adequately high [15]. Once adhén



Table 1: Time complexity of reliability-search queries: the propdRQ-tree-based methods vs. existing two-terminal reliabilityettibn methods when
used for reliability searchn andm are the number of nodes and arcs in the input uncertain gGpliis the diameter ofj, K is the number of deterministic
graphs sampled frorng, S is the set of query source nodes.andm (i < n, m < m) are the number of nodes and arcs of the subgrap§ diat the

proposedRQ-tree-based methods need to visit.

RQ-tree-LB (this work) | RQ-tree-MC (this work)

MC-Sampling13] | RHT-Sampling[20]
single-source queries|| O(K(m + n)) O(n?d)
multiple-source queries| O(K(m + n)) O(n%d)

O(7m)
O(|S|nm)

O + K(m + 1))
O(|S|am + K (i + 1))

solution to this problem can be determined by reliabilitsrsé.

a sampling technique applied to the candidate set only. ®he f

Road networks can be modeled as uncertain graphs because ofer verification method guarantepsrfect precisionas it returns

unexpected traffic jams [19]. Due to the presence of arc fittha
ties in such types of networks, reachability from a set afrakative

source locations to a set of affordable target locationsilshbe

interpreted in a probabilistic way, thus naturally leadiogjueries
formulated as reliability-search queries: “What are adl lications
among the possible alternative ones given in input that emehr-

able from the source location(s) with high probability?”.

Challenges. Even the simplest reliability-detection problem, i.e.,
two-terminal reliability, is a#P-complete problem [6, 32]. Thus,
although exact reliability detection has received atteniin the
past [3], the focus nowadays, due to the large size of nesyork
has mainly been on approximate solutions. Most work in tais r
gard has resorted to Monte-Carlo sampling methods [138}3a2
well as other sampling techniques improving upon the effinjeof
classic Monte Carlo method&®HT-sampling20]). Such approx-
imate reliability-detection strategies can in principkddapted to
handle the novel reliability-search queries we study is thork,
but, as discussed next, they are not really appropriate.

The classic Monte-Carlo approach would simply considerta se
of K deterministic graph instances sampled from the input uncer
tain graph according to its edge probabilities, and deteenaill

nodes reachable from the query source nodes in each graph in-

stance: all nodes reachable in a fraction of graph instarcg®’
are returned as answer to the query.

The RHT-sampling technique [20] can also be easily adated t
handle reliability-search queries. The idea is to make abmurof
O(n) distinct reliability-detection queries (whereis the number
of nodes in the input graph) in order to determine the prdtgbi
that each node in the graph is reachable from the source nibaes
answer to the reliability-search query will be then giveraliyhose
nodes whose reliability is no less than the threshpld

In all applications such as those listed above, howeverreahe
quired rate of reliability-search queries is usually higfthus,

a fundamental requirement is to perform any single query ver
quickly. This makes the naive adaptations of existing agpro
mate reliability-detection methods not well-suited. ledgfor an
input graph ofn nodes;m arcs, and diametet, the time complex-
ity of such adaptations is eith€ (K (n + m)) (MC-sampling) or
O(n*d) (RHT-sampling), which is clearly unaffordable for online
computations on large-sized graphs that are commonly enemd
nowadays (Table 1). This makes the problem of fast estimatin
reliability-search queries very challenging.

Our contributions and roadmap. In this work we study the prob-
lem of fast online approximation of reliability-search queriea o
uncertain graphs Our solution relies on pre-computing offline in-
formation that can be exploited to speed-up online quergess-
ing. To this aim, we devise a novel index, calle@-tree, which
allows to process our queries very efficiently. Our offlinddr-
ing technique relies onlgierarchical clusteringof the nodes in the
input graph, where the hierarchical structure is based eroth
timization of a principled balanced-minimum-cut criterioQuery
evaluation consists of a maximum-flow-based candidatergéor
(filtering) step and a verification step that relies on ei(lagran ef-
ficient lower bound based on the notion of most-likely path(x)

no incorrect (false positive) nodes (while false negatoasarise);

it also avoids sampling at all, resulting in very high effiwg—

the speed-up over reliability-detection baselines up te ixders

of magnitude. On the other hand, sampling-based verificatio
guarantees better accuracy (in terms of recall). The ingzr@ac-
curacy comes at a price of higher execution time, which, how-
ever, remains drastically less than the time required byptag:
based baselines—speed-up over reliability-detectioelives, in
this case, is up to one order of magnitude.

As a further important feature, the propode@-tree supports
both single-source anchultiple-source reliability-search queries
Particularly, multiple-source reliability search is a @al gener-
alization that is required in several real-world scenarggh as
influence maximization (see Section 7.7).

Our contributions can be summarized as follows:

e We define the fundamental problem of reliability search in un
certain graphs (Section 2).

e We devise an index, calle®RQ-tree, to support efficient
yet effective approximate online answers to reliabiligasch
queries (Section 3). The proposed index is based on a hier-
archical clustering of the nodes in the graph. The hierarchi
cal structure ofRQ-tree derives from the optimization of a
partitioning method based on the balanced-minimum-cut op-
timization criterion (Section 6).

e Based orRQ-tree, we develop a fast filtering-and-verification
strategy (Sections 4-5). We exploit an upper bound on the
probability of a set of nodes in a cluster to reach nodes deitsi
the cluster, and a lower bound on the probability of reaching
any other node. The first bound is used for candidate genera-
tion, while the latter is used for verification.

e We conduct a thorough experimental evaluation by involv-
ing several real-world uncertain graphs and comparing the
proposedRQ-tree-based query-evaluation strategy with two
baselines: a simple Monte-Carlo-sampling technique aed th
RHT-sampling method [20], both originally conceived for
two-terminal reliability detection (Section 7). Resultearly
attest high efficiency and accuracy of our proposal.

e We show how to applRQ-tree in the well-known influence-
maximization problem [23] (Section 7.7).

2. PROBLEM STATEMENT

An uncertain graphg is a triple(N, A, p), whereN is a set ofn
nodes, A C N x N is a set ofmn directed arcs, and: A — (0, 1]
is a probability function that assigns a probability of ésige to
each arc in4.

The bulk of the literature on uncertain graphs and device-
network reliability assumes the existence of the arcs ingtiaph
independent from one another and interprets uncertairhgrap-
cording to the well-knowmpossible-world semanti¢40, 11,18, 20,
28,29,31,34]: an uncertain graghwith m arcs yield2™ possible
deterministic graphs, which are derived by sampling indepatly
each ara € A with probability p(a). More precisely, a possible
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Figure 1:Run-through example: an uncertain graph.

graphG C G is a pair(N, Ag), whereAg C A, and its sampling
probability is:

Pr@) = [ »l@ ] (1-pla).

a€Ag a€A\Ag

@)

For a possible deterministic graph, we define an indicator
function P¢ (S, t) to be 1ifthere is a path i& from a set of source
nodesS C Ato atarget nodée € A, and 0 otherwise. We say there
is a path from the node sétto a nodet if a path fromat leastone
nodes € S tot exists. The probability thatis reachable front
in the uncertain grap§, denoted byR (S, t), is computed as:

R(S,t) = > Pa(S,t) Pr(G).

GCg
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The number of possible worlds C G is exponential in the number
of arcs, which makes the exact computationR{fS, t) infeasible
even for moderately-sized graphs.

The problem we address in this work is the following.

PROBLEM1 (RELIABILITY SEARCH). Given an uncertain
graphG = (N, A, p), a probability thresholdy € (0,1), and a
set of source nodeS C N, find all nodes inN that are reach-
able from S with probability greater than or equal tg, that is,
RS(S,n)={te N | R(S,t) >n}. O

EXAMPLE 1. Consider the uncertain graph in Figure 1, and
suppose one wants to comp®& ({s}, 0.5), i.e., all nodes reach-
able froms with probability no less than.5. It is easy to see that
w is part of the solution due to a direct arc froswith probability
0.6. Also,u can be reached directly, or via; the probability that
u is reachable frons is thusl — (1—0.5) x (1—0.6 X 0.5) = 0.65.
Hence, alsou belongs to the solution set. Following a simi-
lar reasoning, one may verify that the answer to the query is:
RS({s},0.5) = {s,u,w}. O

Problem 1 is a generalization of the two-terminal relidipili
detection problem, which asks to compute the probabilit #n
target node is reachable from a source nodelndeed, a simple
reduction from two-terminal reliability-detection to Pdem 1 ex-
ists. The idea is to estimate the answer to a given instanteeof
former problem by performing a binary search on the threshol
Two-terminal reliability detection is a prototypicgtP-complete
problem [6, 32]; as a consequence, Problem 1 is hard as well.

Due to its intrinsic hardness, we tackle the reliabilitgish
problem from an approximation viewpoint. Particularlyy ooain
goal is to develop index structures that can be exploitege¢ed-up
online query estimation. As our focus is on approximatetgmhg,
the answer to any reliability-search query inevitably eimg errors
in terms of false negatives and/or false positives. Idettly goal
is to have answers that exhibit low false-negative and fatsstive
rates. However, which of these two rates is to favor realjyetels
on the application. Some applications require high prenigi.e.,
low false-positive rate) such as packet-delivery prolighih sen-
sor networks [15]. In other applications we are rather moteri
ested in high recall (i.e., low false-negative rate), suehradicting

Uu({S}{SUW}) = 0.496

Uout({s}l{sw}) =0.80

Uoul({Sh{s}) = 0.80
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Figure 2: An RQ-tree index for the uncertain graph in Figure 1. The

upper bounds of outreach probability frofs} to outside various clusters
are also shown (Example 2).
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co-complex memberships by finding all proteins reachaldmfa
core of proteins [5]. For this purpose, our proposal provitie
user with a choice between two methods—the first method (Sec-
tion 5.1) favors precision (guaranteeipgrfectprecision), while

the second method (Section 5.2) focuses more on recall.

3. THE RQ-TREE INDEX: OVERVIEW

The proposed index, calléRiQ-tree, is based on ierarchical
clusteringof the nodes in the input uncertain graph. Specifically,
the RQ-tree, hereinafter denoted by, is a tree, where the root
contains the complete set of nod¥s and the leaves correspond to
individual nodes ofV. All clusters at any level form a partition
of N. A cluster at level is partitioned into a number of children
clusters at level + 1. As a result, there exists a unique pattin
that connects each nodec N to the root. Such a path is composed
of clusters that are all nested into each other. An exampRQ®f
tree index for the uncertain graph of Figure 1 is shown in Figure 2,
together with some bounds that will be clarified in the nektisa.

Our query-processing strategy is based on two phases:

1. Candidate generatigrwhere acandidateset of nodes is built
based on the information stored into the pre-compRed
tree index. All nodes not belonging to the candidate set are
discarded. A nice feature of this step is to guaranteertbat
true positivenode is discarded from the candidate set.

2. Verification where a screening is applied to the candidate set
so to discard nodes that should not be part of the answer.

As the way we define thRQ-tree depends on the query processing
strategy, for the sake of clarity we first present the quepegssing
strategy assuming aRQ-tree given (Sections 4-5), then we de-
scribe how to build th&®Q-tree index (Section 6).

4. QUERY PROCESSING: CANDIDATE
GENERATION

Here we describe the candidate-generation step of oureonlin
reliability-search strategy. We first present the main tegcal re-
sults (Section 4.1). Then, we discuss the case in which theeso
set is a singleton (Section 4.2). Finally, we focus on theegan
case where the source set has cardinality larger than ore (Se
tion 4.3).

4.1 Outreach probability

A key concept in our candidate-generation algorithm is the n
tion of outreach probability which is the probability that a subset
of nodesS within a clusterC in theRQ-tree index is connected to
nodes outsid€’, i.e., withinC' = N \ C.



DEFINITION1 (OUTREACH PROBABILITY). Given a set of
nodes (clustery” C N and a subsef C C, theoutreach proba-
bility Row:(S,C) from S to outsideC is defined as the probability
that S reaches the nodes not belongingdoi.e.,

Rout(S,C) = > Pq(S,C) Pr(G)

GCg
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wherePg (S, C) = 1if there exists at least a nodec C such that
P (S,t) =1, Pa(S,C) = 0 otherwise. O

Two interesting observations arise from the definition of-ou
reach probability: if the outreach probability 6fin C' is smaller
thann, then the probability of reachingverysingle node outside
C'is also smaller than (Observation 1), and the outreach probabil-
ity values are non-decreasing for clusters that are nesteceach
other (Observation 2).

OBSERVATION 1. For a clusterC C N and its subsef C C
the following holds: ifR,.:(S,C) < nthenR(S,t) < ¢ for all
teC. O

OBSERVATION 2. Given any two clusters”;, C; such that
C; C Cj, and a set of source nodes C Cj, it holds that
Rout(sy O’L) > Rout(S7 CJ) O

Observations 1 and 2 create the basis for retrieving a valid
candidate set from aRQ-tree 7. Specifically, given a query
RS(S,n), consider all cluster€” in 7, such that,S C C and
Rout(S,C) < n. Observation 1 guarantees that all nodes out-
side each of those clusters violate the reliability coodittherefore
they can safely be discarded. Clearly, one wants to consialgr
the smallest among those clusters in order to maximize the nu
ber of pruned nodes. Observation 2 ensures that one onlg need
focus on the cluste€ having the largest valug,.. (S, C) that is
smaller tham.

A candidate-generation strategy based on the above regsoni
would require to compute outreach probabilities exactly, duch
a computation ig#P-complete. A possible solution is to approx-
imate R,.: values by sampling. Unfortunately, besides the well-
known efficiency issues, this sampling-based solution damdt
guarantee that the results stated in Observations 1-2 aagryas
any sampling-based approximal&,,; value can in general be ei-
ther smaller or larger than the re@l..: value. Instead, the validity
of Observations 1-2 is still guaranteed if one would use geup
bound onR,.:. For this reason, we next define an upper bound on
Rt and use it in substitution for the actual,..; value.

Upper bound on outreach probability. While various upper
bounds for reliability exist in the literature [7, 14, 24,]2%0ne

of them is really suitable for our problem. Indeed, the catte
probability can be viewed as a special notionsolurce-to-any-
terminal reliability, where one is asked to compute the probability
that some source nodes are connecteat teast onenode in a tar-
get set [21]. To our knowledge, no upper bounds have beeredefin
for this particular type of reliability problem. One mighdagpt the
upper bounds on two-terminal reliability by interpretirausce-to-
any-terminal reliability as a special case of two-termirgdibility
where the sources and the terminals are sets of nodes indtsiad
gle nodes. However, the upper bounds on two-terminal riéitiab
require to consider the entire netwonkhich in our context would
lead to lose the pruning benefits given by R@-tree structure.
Instead, the upper bound we propose, denoted’hy, is based
on the min-cut/max-flow principle andiéquires only to consider
the subgraph induced by the nodes of the currently beinggssed
cluster We start by defining the notion ofiost-likely cubetween
two disjoint sets of nodes.

Algorithm 1 Compute U,ut

Input: an uncertain graply = (N, A, p); a clusterC C N; a set of
source node$ C C

Output: Uswt (S, C)

1.C «{veC|3ueC : (uv) e A}

DA {(u,v) €A | {u,v} CCUT}

:foralla € A’, sete(a) = —log(1 — p(a))

JbuildG = (CUT’, A c)

. f* « MaxFlow(G, S,C")

P Uout(S,C) + 1 —exp(—f*)

OO0 A WN

DEFINITION 2 (MOST-LIKELY cUT). Consider a determinis-
tic graphG = (N, A) and two disjoint sets of nodes,Y C N.
We define a cu€(X,Y’) between the setX andY to be a set
of arcs in A whose removal disconnecf§ and Y. Consider
now an uncertain graply = (N, A, p) and two disjoint sets of
nodesX,Y C N. We define the most-likely cat'(X,Y) to
be a set of arcs such that: (1) it is a cut betwe&nand Y,
as defined on the deterministic graph that contains all thesar
of G; (2) among all cuts betweeX and Y, it is the one that
maximizes the probability of having all its arcs non-prdsére.,

C*(X,Y) = argmaxcx,v) [Luce(x.vy (1~ p(@). O

As stated in the following theorem, the most-likely cut pd®s us
a way to express the desired upper bolhd:.

THEOREM 1. Given a clusteilC C N and a subsef C C, it
holds that:

Rout(sy C) S Uout(S, C) =1- maz
C(S,C)

I[I -»).

a€C(S,0)

PROOF Consider any cu (S, C). From the independence as-
sumption, the probability that none of the arc<ifs, C) exists is
equal to] [, (s.5 (1 — p(a)). Now, consider the event that none
of the nodes inS can reach any node outsidé The probability
of such an event is equal fo— R..+(S,C), and is clearly lower-
bounded by the probability that no arc@iiS, C) exists. Based on
this reasoning, it holds that:

[ (-pla)), foralc(s,0),

acc(s,0)

1-—- Rout(s7 C) 2

or, equivalently,Ro.+(S,C) < 1 — maXe s Haec(sf)(l -
p(a)). The theorem follows. []

The upper bound/,.,: defined in Theorem 1 can be computed
by running a max-flow algorithm on a capacitated graph approp
ately derived fronG (see Algorithm 1). Specifically, our algorithm
works as follows. First, we construct a capacitated gr@ph/hich
has the same sets of nodes and arc§.a€ach arca in G has
a capacityc(a) equal to—log(1 — p(a)). Then, we compute the
max-flow f* from S to C on G Asthe following theorem states,
the desired upper bound,.:(S, C') can eventually be computed

asl —exp(—f").

THEOREM 2. Given an uncertain graply = (N, A,p), let

G = (N, A, c) be a capacitated graph derived froghby assign-
ing a capacityc(a) = —log(1l — p(a)) to each arca € A. Also,
given a clustelC’ C N and a set of source nodes C C, let f*

_ 1o compute max-flow between a set of source noflesd a set of sink nodes
C' we exploit the classic trick of asking for the max-flow betweedummy source
so and a dummy sinkg, where the dummy sourcg) is connected to all nodes iff
while all nodes inC” are connected to the dummy sitik, and all arcs outgoing from
so or incident toto have infinite capacity.



denote the maximum flow frafito C on the grapk@. It holds that
Uout(S,C) =1 —exp(—f").

PrROOF From the max-flow/min-cut equivalence, it follows that
the valuef™ of the max-flow is equal to the valug of the min-cut.
We have

f* — C*
min cla) =
C(S,0) Z ( )

a€c(s,0)

min
c(s,0)

> —log(1 - p(a))

a€C(S,0)

min —log H (1-p(a) =

c(s,0) a€C(S,0)
= —log Jnax (1-pa)) ] =
s, )aEC(s,E)

—log(1 — Usut(S,C)), (from Theorem 1)

which proves the theorem. [

As stated above, the proposed upper bolRd; can be com-
puted by considering only the subgraph induced by the nodéi
clusterC (and some close periphery), which leads to a significant
speed-up. This is indeed possible thanks to following olatiEm,
which is exploited in Lines 1-2 of Algorithm 1.

OBSERVATION 3. Given an uncertain graply = (N, A, p),
letG = (N, A, c) be a capacitated graph derived froghby as-
signing a capacitye(a) = —log(1l — p(a)) to each arca € A.
Given a clustel”’ C N and a set of source nodésC C, the max-
imum flow fromS to C is equivalent to the maximum flow fresrto
the sefC’ C C of all nodes inC having an incident arc outgoing
fomC,ie. theseC ={veC|3ueC : (u,v) € A}. O

ExXAaMPLE 2. Consider the running example in Figures 1-2.
The upper bound on the outreach probability frds} to outside
cluster{s, w} is 0.80, due to the arc&, w), (s, ). It means that
the probability that{s} reaches any node not belonging{e, w}
is no greater thar®.80. Similarly, the upper bound on the outreach
probability from{s} to outside clustefs, w,u} is 0.496, due to
the arcs(u, t), (u,v), (w,v). Asn = 0.5, all nodes outside cluster
{s,w,u} can be pruned. []

4.2 Single-source queries

We next describe how to perform candidate generation wreen th
query set of source nodes is a singleton, i.e., queries araufated
asRS({s},n).

Given a query nods, there exists a single path in tRQ-tree
index7 from the leaf clustef s} to the root of7. Our candidate-
generation strategy traverses all clusters along thisipathottom-
up fashion i.e., starting from the leaf cluster and goingas the
root. The traversal of the path stops as soon as it encoumbans-
didate clusterC*, whose upper bountf,...({s}, C*) on outreach
probability is smaller than. More formally:

C*({shn) = argmax  Unu({s},O).
C2{s},
Uout ({s},C)<n

Observation 2 ensures tha) C* is the smallest “valid” candidate
cluster, i.e., the cluster that guarantees that the disdasdtC* is
as large as possible; and)(all nodest ¢ C* haveR({s},t) < n,
i.e., no true positive is discarded.

Note that, during our bottom-up traversaldf the upper-bound
valuesU,.:({s},) are computed in a lazy fashion according to
the strategy outlined in Algorithm 1. To further speed-upmyu
processing, one may consider pre-computing the upperebaain
uesU,u:({s}, C), for all clustersC € T and all nodess € C.
However, such a pre-computation would lead to an increasieeof
index storage space and, more importantly, the index Imgltime,
which would becomé&2(nm), thus unaffordable for large graphs.

Running time. Our candidate generation consists of two steps: the
bottom-up traversal of the tré€, and the computation of the upper-
bound valued/,.: during that traversal. The first step is linear in
the heighth of the tree7". The second step requires performing a
max-flow computation for each cluster visited during thegraal.

As a result, the overall running time of computing the upipeund
valuesU,.,: is expressed as max-flow computations. According
to Observation 3, the max-flow computation can be performed i
the subgraph induced by the nodes in the cluster and thebwigh
of each of such nodes. Thus, one can upper bound the running
time of each max-flow instance by using the size of the sultgrap
in the last (i.e., the largest-sized) cluster encountengihg the
traversal. Lef: andm denote the number of nodes and arcs in that
subgraph. First of all, we note that, using appropriate datac-
tures to store the treg, the subgraph induced by the that cluster
can be derived irO(n 4+ m) time. Then, concerning max-flow
computation, one of the fastest existing max-flow algorighsthe
one by Goldberg and Tarjan [16], whose running tim&igun),
where the® notation hides logarithmic factors. Assuming that the
tree7 is balanced (see Section 6), thier= O(log n). Moreover,
asn < n, itis reasonable to assume that= O(ﬁk), with k& con-
stant. This way, it holds tha = O(log#*) = O(log ), and,
therefore, the overall time complexity of the candidateegation
phase i€ (amh) = O (7 log i) = O(Rrn).

4.3 Multiple-source queries

In case of queries containing multiple source nodes, on&lcou
follow exactly the same candidate-generation strategynathe
single-source case: retrieve the smallest cluster in ttexirtree
that contains all nodes of the query source$eHowever, such a
strategy may not be very effective in the multiple-sourcgeca he
reason is that the cluster enclosing all nodes imight be a large
cluster placed very close to the root of lR&-tree 7. This would
affect the efficiency of query processing, as a larger porib7”
would be visited before encountering the desired candgiztteand
thus a large number of candidate nodes would need to be derifie
Therefore, we discuss next how to selectedof clusters (rather
than a single cluster common to all source nodes) that magach
better pruning.

Multiple-source candidate clusters. Our goal is to derive a set
of clusters{C;};_, of 7 whose union se€, = |J, C; meets the
following requirements:i} all source nodes belong @_; (ii) the
property of having no false negatives discarded still holdat is
no false negatives are present among the nodes oufsiceand
(iii) the size ofC'y, is minimum, so to guarantee maximum pruning.
We translate the above requirements into an optimizatiob-pr
lem. Requirementsi) and (ii) are straightforward to formulate,
while for requirementi{) we first need to derive some theoretical
results, which are formally stated in Lemma 1 and Theorem 3.

LEmMMA 1. Let {Cy,---,Cy} be a set of clusters iff” and
{S1,---, Sk} be a set of source node sets, whsteC C;, for all
i,andS; N S; =0, forall i # j. LetalsoCy = |J, C; and Sy =
Ui SZ |t hOIdS thatUout(Su, Ou) S 1 - Hz(l - Uout(Si, CZ))



PROOF Given any two (disjoint) sets of nodé§, Y C N, let
C*(X,Y) denote the most-likely cut fronX to Y (as defined in
Definition 2). Let alsd®r(—~C"(X,Y)) = [[,ccx(x,v)(1 —P(a))
be the probability thaf* (X, Y") does not exist. First, we note that,
by definition, the probabilityPr(—C*(X,Y")) cannot be smaller
than the probability that any single valid cut frakhto Y does not
exist. Given any supersét’ O Y (suchthatX N Y’ = ) itis
easy to see that* (X, Y") is a valid cut fromX to Y too. Thus,

Pr(~C*(X,Y)) > Pr(~C(X,Y")),
forall Y DY, X NnY’ = @, which implies that
Pr(=C"(Si,Cu)) > Pr(=C"(Si, Ci)),

as, clearlyC; 2 Cy (andS; N Cu = ). Furthermore, notice that

U; €*(Si,Cu) is a valid cut fromSy, to Cu. Hence, based on the

same argumentation as above, the following holds:
Pr(~C*(Su,CL)) > Pr(= U, C*(S:, T0)).

Finally, the probability that none of the arcs in the uniomafitiple
cuts exists is lower-bounded by the product of the prokgititiat
any single arc in the union cut does not exist, that is:

Pr(=J; C*(S: Cu)) > HPr(ﬁC*(Si,c_u))-

In summary, based on the above results, we have:
Pr(=C*(Su,C0)) > Pr(=U,C*(8:,C)) >
—_————

1*Uout(SU7CU)

> HPT(ﬂC*(SmC_u)) > HPT(ﬂC*(Sw@)),

1
1-Uout(S;,C4)

which implies thatlo.:(Su, Cu) < 1 — TT,(1 — Uout(Si, Ci)).
The lemma follows. [

Based on the above lemma, we can now provide the ultimate
condition to be ensured for having no false negatives oeSid
As formally stated in Theorem 3, such a condition is exprsse
1- Hie[l.k](l = Uouwt(Cs N S, Cy)) <.

THEOREM 3. LetS be a set of source nodes afd’, - - - ,Cx}
be a set of clusters ifi such thatC; N S # @, for all 4, and
{C; N S}, forms a partition ofS. Let alsoCy, denote the union
setlJ,; Ci. It holds that:

1[0 = Usut(Ci N S, Ci)) < = R(S,t) <n,

forall t € Cu.
PrROOF. For each nodeé € C, we have

R(S7 t) S Rout(s7 CU) S Uout(S7 CU) S

1-J]Q = Usw(Ci N S, Ci)) <n. (fromLemma1) O
The optimization problem we are interested in can now be pre-
cisely characterized.

PROBLEM2 (MULTIPLE-SOURCECANDIDATE GENERATION).
Given anRQ-tree index 7 and a set of source nodes, select
a set of clusters{C1,...,Cy} of T so that, for the union set
Cu = UL, Ci, the following holds:

() Sccy;

(i) 1 -TL(A = Uout(C:i N S, Cy)) < m;
(i) |Cy|is minimum. O

The above problem can be solved by using a dynamic-
programming algorithm withO(|S|n log n) max-flow computa-
tions. However, such an exact algorithm may be too slow ig-pra
tice. For this purpose, we introduce next a faster greedyisteau

Heuristic multiple-source candidate generation.The idea of our
heuristic is to perform a number of bottom-up traversal§ o
parallel, one for each € S. Similar to the single-source case, each
traversal proceeds along the path that connects thedqtodae root

of 7. Traversals are performed in a round-robin way and terrainat
when the following condition is met. Lef; denote the current
cluster inT that encloses node at a certain point of the traversals,
for all s; € S (note that any two nodes, s; € S can be enclosed
by the same cluster; = C;). Our procedure stops when it reaches
theminimume-sizedinion setCy, = J; C: for which condition ¢3)

of Problem 2 is satisfied, i.el,— [],(1 — Uou:(Ci N S, Cs)) < .
The final candidate s&t™ corresponds to the union sét, of the
last clusters reached by the traversal.

Running time. The running time analysis of the (heuristic)
multiple-source candidate generation roughly follows dhalysis
of the single-source case. We need to perfd@S| log n) max-
flow computations—contrast to ti(|S|n log n) max-flow com-
putations required by the exact method, &dS|log n) computa-
tions of U,..:. The overall time complexity is therefot@(|S|7m).

5. QUERY PROCESSING: VERIFICATION

Though guaranteed not to miss any true positive, the catedida
setC™ generated according to our candidate-generation stestegi
may still contain false positives, i.e., nodefor which R(S,t) <
n. To filter as many of such false positives as possible out of
C™, we propose two verification methods: one method is more
suited for precision, while the other method guaranteeteibes-
call. Moreover, the two proposed methods allows for tradiffg
between accuracy and efficiency in a different way. The high-
precision method is in general very fast, while the efficient
the high-recall method can easily be tuned (at a price of i@ge
curacy) by playing with a parameter (i.e., the number of das)p

Next we describe the proposed verification methods. Both ver
ifications take as input the candidate set eventually géseeray
candidate generation. As a result, there is no distinctetwéen
single- and multiple-source verification.

5.1 \Verification based on a lower bound on re-
liability

The first verification method we propose exploits a lower fabun
on R(S, t), for any source node sétand a node ¢ S. The idea
is that if the lower bound i& 7, then one can safely conclude that
t belongs to the solution set.

Several lower bounds on (two-terminal) reliability haveebe
defined in the context of device networks, including Kruskal
Katona bound, polynomial-based, edge-packing-basedcuatset-
enumeration-based bounds [10, 11, 14, 29]. However, thaseds
require extensive computations to be performed on theeenét-
work (their time complexity is typically in the order 6¥(n*), with
k > 2, or even more). We recall that our lower bound needs to be
exploited during online query evaluation, thus it must beesrely
efficient. For this purpose, we derive a novel and simplerelow
bound, denoted.z(S,t), that is based on the concept wiost-
likely pathfrom S to ¢, and has the advantage of being really fast.



DEFINITION 3 (MOST-LIKELY PATH). Given a set of nodeS
and a nodet ¢ S, the most-likely path?*(S,t) from S to ¢ is
defined as

P*(S,t) = arg max H p(a),
Pei(g,t), acP

4)

whereP (s, t) denotes the set of all paths fronto¢t. [

The following theorem states that the desired lower bolird
corresponds to the probability of the most-likely path.

THEOREM 4. Given a set of source nodésand a nodg ¢ S,
it holds thatR(S,t) > Lr(S,t) = [[,cp«(sPla). Here,a
denotes an arc on the pafd* (S, ¢).

PrRoOOF By definition,R(.S, t) is the probability that least one
pathfrom a nodes € S tot exists. HenceR(S, t) is larger than or

equal to the probability thany single patfrom somes € S to ¢
exists, that is,

R(S,t) > [] p(a

a€P

), forall s € Sand allP € P(s,t).

Therefore, we have

R(S,1) > :
( P H pla H p(a)
seS acP*(S,t)

which proves the theorem.[]

Based on the lower bounfiz, the verification step simply con-
sists in keeping only those nodes C* such thatLz(S,t) > n.
This way, we guarantee perfect precision.

The lower bound. r is computed by a shortest-path computation
on a weighted graph derived froghby assigning to each arce A
a weight—log(p(a)). An important observation here is that, the
shortest-path computation can be limited to the subgGuli G
induced by the candidate g8t and this is the main reason behind
the high efficiency of the proposed lower bound. The motrati
is that our candidate-generation step ensures that alknoaiside
the candidate set have reliability from the query soutésss than
n. Hence, all paths passing through nodes ndétirare guaranteed
to have reliability less than too and can thus be safely discarded,

reliability as compared tg, and thus it does not significantly affect
the reliability values of candidates.

Our sampling-based verification improves upon the recathef
lower-bound-based verification. As a side effect, it (dlighde-
creases precision (not perfect anymore, but still very high, in
the [0.95, 1] range) and the efficiency. Another nice feature of
sampling-based verification is that the number of samplasbea
used as a knob to tradeoff between efficiency and accuracy

5.3 Running time

As stated in Section 5.1, the lower-bound-based verifinatio
strategy only needs to focus on the subgrgpbf G induced by
the candidate set™. According to the reasoning reported in Sec-
tion 4.2, the number of nodes and arcsébare upper-bounded
by 7 andm, respectively. The lower-bounding-based verification
strategy requires to compute the probability of the mdsHi path
from the source node sétto each node in the candidate set. This
can be accomplished with a shortest-path distance conmuiat
G from the source sef, which can be carried out by a simple
variant of the standard Dijkstra’s algorithm where theatise vec-
tor is initialized with the set source nodésrather than a single
source node. The time complexity of this Dijkstra variamhagns
clearly unchanged with respect to the standard algorithaerefore
the time complexity of the lower-bounding-based verificatstrat-
egy isO(m + n).

The sampling-based verification, on the other hand, regjtge
compute all nodes that are reachable from sourceSsat ev-
ery deterministic graph sampled from subgrapinduced by the
candidate seC*. This can be accomplished by BFS in time
O(K (m + n)) time, K being the number of samples.

In Table 2 we summarize the time complexities of the vari-
ous phases of the proposed query-processing strategy.n lbea
noted that, overall, our query processing ranges f@ffm) time
(single-source, lower-bounding-based verification) (¢S] 7irm +
K(m + n)) time (multiple-source, sampling-based verification).
In all cases, however, asandm are very small in practice (see
Section 7), the efficiency of our query processing is verynhig

6. BUILDING THE RQ-TREE INDEX

In this section, we provide the guidelines for building therar-

as the verification method would anyway keep only those nodes chical structure of ouRQ-tree index7". We note that:

whose most-likely path frony has probability> 7.

5.2 Sampling-based verification

Our second verification method perfornC-sampling to es-
timate the reliability of the candidate nodes, and therefyyroves
the recall of the lower-bounding-based verification. Ualgkisting
sampling methods [13, 20], sampling here is performed onallsm
subgraph of the input uncertain graph, i.e., the subgraghcied
by the candidates only. We combiivC-sampling with a breadth
first search (BFS) from the query set, and thus restrict oor-sa
pling method only inside the subgraph induced by the canetda
As a result, even though less efficient than lower-bounthiased
verification, this sampling-based verification is still ydast and
outperforms the baselines by an order of magnitude in efiigie
(Section 7). This is indeed possible by the intrinsic chastics
of our RQ-tree index, which allows to significantly reduce #ize

of the subgraph where sampling is applied. One may note that,

when sampling over the subgraph induced by the candidatthseet
contribution of the paths passing through nodes not in thdidate
set is ignored. Since all non-candidate nodes have retiabibm

the source set less thana path from the source set to a candidate
node that goes through non-candidate nodes also have vaiy sm

1. TheRQ-tree should be equally effective for any reliability-
search query, regardless of the source set. Intuitively,ish
achieved by partitioning™’s clusters intdbalancedchildren.

2. Avery small height off” is not desirable, for example, think
about the extreme case where the heighfois 1 (which
arises when the branching factor pfis n): such anRQ-
tree would be completely useless for our query processing
strategy. Within this view, we keep the heightbfof rea-
sonable size by fixing the branching factorbfto a small
number, i.e.2 for simplicity.

. Finally, for each clustef' in 7, and for each node € C, we
require forR,.:({s}, C) to be as small as possible, since this
would reduce the size of the set produced during candidate
generation.

Based on above requirements, we develop the following ndetho
for building anRQ-tree index 7. First, according to requirements
1) and 2), we perform a (recursivbalanced bi-partitionof each
non-leaf cluster iri/". Requirement 3), instead, provides the basis
for the specific criterion to employ for defining each bi-fiah.



Table 2:RQ-tree: query-processing time complexity.

candidate verification total
generation Jower bound MC-sampling | Tower-bound verification — MC-sampling verification
single-source |  O(nm) O(m + 1) O(K(m+n)) O(nm) O(am + K(m + 1))
multiple-source| O(|S|am) | O(S|(m + 7))  O(K (7 + 7)) O(|S|amn) O(|S|wm + K (i + 7))

Particularly, for any cluste€' in T, the ideal desideratum would
be to minimize the single outreach probabilities of eactssu®y C

C, which is clearly unaffordable. Within this view, we firstrie

an upper bound that is general for the outreach probakilitfeall
subsets of nodes in a specific cluster, and then we searchdor t
balanced bi-partition that minimizes this upper bound. eNtbiat
the upper bound provided here differs from ttig,; upper bound
derived in Theorem 1, because the latter is instead speoifia f
given set of source nodes. The expression of this generarupp
bound, denoted b/, .., is formalized in Theorem 5.

THEOREM 5. Given a clusterC, for all sets of source nodes
S C C, it holds that Rout(S,C) < Uout(C) 1 -
[w.v)uecwged —p((u,0))).

PROOF By definition,1 — Ro.:(S, C) corresponds to the prob-
ability that no nodess € S can reach any node outside
C. In this respect, consider all outgoing arcs @f i.e., those
arcs that connect a node i with a node outsideC. The
probability that none of these arcs exists is a lower-bourrd f
1 — Rout(S,C). As a result, it holds that — Rou:(S,C) >
Iy ucowgc(l = p((w,0))), or, equivalently,Rou: (S, C) <
1- H(’u,’u):uec,1/$c(1 - p((“’?v))) O

Based on the above reasoning, we next formalize the optimiza

tion problem to be recursively solved for generating a btipan

of various clusters irf. The objective is to partition any given
clusterC' € T into two clusters”; andC> such that{) Uowu:(C1)
andU,.+(C2) are simultaneously minimized, ang)(C1 and Cs
have roughly the same size. Note that minimizing.(-) is equiv-
alent to maximizing — Us+(-), thereby our requirements are fully
captured as follows:

PROBLEM3 (BUILD-RQ-TREE). Given a clusterC € T,
partition C' into two clusters”, C5 that maximize

(= Uout (C1)) (1 —Uout (C9) | (1 —Uour(C1) (1~ Uout (C2))

. g
(& |C2|

As shown in Theorem 6, Problem 3 is equivalentitel -RATIO-
cuT [33]. As aresult, Problem 3 BN P-hard.

THEOREM 6. Problem 3 isNP-hard.

PROOF We prove the theorem by a reduction freftN -RATIO-
cuT. We construct a weighted (deterministic) graﬁh con-
taining the same nodes and arcs@s We assign to each arc
a in G a weightw(a) = —log(1 — p(a)), and we make
undirected by ignoring the directness of the arcs. Given two
node setsN;,N; C N, let A(N;, N;) denote the set of all

arcs in G betweenN; to N;. Solving MIN-RATIO-CUT on
G finds a bi-partition{/N1, N>} of the node setV that min-
imizes 1 > acav, vy W) + TR Lacainy,ng) w(a), OF,
equivalently, that maximizesy [T,ca(n,,n,) (1 — p(a)) +
o7 Hacacn, v (1 — P(a) (L = Uour(N1))(1 —
Uout(N2)) + ﬁ(l = Uout(N1))(1 = Uout(N2)). [

Algorithm 2 BuildRQtree

Input: an uncertain grapf = (NN, A, p)

Output: anRQ-tree index 7T~

1: C+ {N}, T+ {C}

2: repeat

3 C«0

4: forall C € Cst.|C|>1do

5 build @ = (N, A, w), whereN = C, A = {(u,v) | (u,v) €
A,u € C,v e C},andw(a) = —log(1—p(a)), foralla € A

6 {C1,Ca} + METIS (G)

7 C' + C'uU{Cy,C2}

8. end for

9. C+C, T+ TU{C}

10: until C =0

In principle, one of the existing approximation algorithrios
MIN-RATIO-CUT [4] can be employed to solve OoWBUILD-RQ-
TREEproblem. But the main issues of this approach are that
RATIO-CUT is hard to approximate (the best known approximation
factor is polylogarithimic), and, more importantly, thasting ap-
proximation algorithms are typically inefficient. Hencee @epart
from solutions having approximation guarantees and agprtze
problem heuristically. Specifically, in our implementatiove use
the well-knownMETIS algorithm [22], whose validity in terms of
both accuracy and efficiently has been widely attested. Eleild
of our RQ-tree building strategy are reported in Algorithm 2.

Index building time. Given a clusterC in T, let nc and mc
denote the number of nodes and arcs in the subgraph of the inpu
uncertain graplg identified by the nodes i/, respectively. Com-
puting a bi-partition ofC' by means of thé/IETIS algorithm takes
O(nc + mc) time. RunningMETIS on all clusters of any single
level of T takesO (3" (nc + mc)). As all clusters in any single
level of T forms a partition of the whole set of nodegnthe latter
is equivalent taD(n + m). The number of levels (height) &f is
O(log n), as ourRQ-tree index building strategy guarantees for
to be a balanced tree. As a result, the overall time complefit
building anRQ-tree index isO((n + m) log n).

Index storage space. As explained above, the height &f is
O(logn). Each level of7 contains a partition of the whole set
of nodes inG, thus each node ig is stored exactly one time for
each level. Hence, the overall storage space required BN
tree index isO(nlogn).

7. EXPERIMENTAL RESULTS

We present experiments to assess the performance of our
RQ-tree-based reliability-search methods. We evaluate: index
time/space performance (Section 7.2), query-processingracy
and efficiency (Section 7.3), pruning power BQ-tree (Sec-
tion 7.4), performance with varying source set sizes (88cfi5),
and scalability (Section 7.6). Furthermore, as an examiptead-
world application, we show how olRQ-tree index can signifi-
cantly improve upon the efficiency of the hill-climbing atgbm
[23] used in thenfluence-maximizatioproblem (Section 7.7).

The code is implemented in C++ and the experiments were per-
formed on a single core of BDOGB, 2.50GHz Xeon server.



Table 3:Dataset characteristics.

Dataset # Nodes # Arcs
DBLP (1 = 2) 684911 1569 982
DBLP (11 = 5) 684911 4569 982 5
DBLP (1 = 10) 684911 4569 982 3
Flickr 78322 20343018 =
BioMine 1008201 13445048 °©
Last.FM 6 899 24 144
WebGraph 10000000 174918788
NetHEPT 15235 62776
7.1 Settings

Datasets.We involve five real-world datasets, each representing a
directed uncertain graph (Table 3 and Figure 3).

DBLP (http://ww informatik.uni-trier.de/

~l ey/ db/). The dataset is a subset of the popular co-authorship
network used in [20, 28]. Here, the arc probabilities exprie
strength of the collaboration between the two incident agth
Particularly, in [20, 28], the probabilities derive from @&xpo-
nential cdf of mearu to the number of collaborations; hence, if
two authors collaborated times, the corresponding probability
is 1 — exp~“/*. We considen € {2, 5,10} in our experiments.
Keeping fixed the collaborations, higher values iofgenerate
smaller probabilities (see Figure 3).

Flickr (ntt p: // www. fI'i ckr. com). Flickr is a popular online
community, where users share photos, and participate immm
interest groups. We borrowed the dataset from [28], wheee th
probability of the edge between any two users is computaghass
ing homophily the principle that similar interests indicate social
ties. In particular, [28] uses as a measure of homophily élceard
coefficient of the interest groups that the two users belong t

BioMine This is a recent snapshot of database of the BIOMINE
project [30], which is a collection of biological interastis. The
graph is directed, and with probability associated to tles guan-
tifying the strength of the interaction [30].

Last.FM (http: //ww. | ast. fn). Last.FM is a music web
site, where users listen to their favorite tracks, and comoate
with each other based on their music preferences. We craavled
local network of Last.FM, and formed a directed graph by emtn
ing two users if they communicated at least once. The prdbabi
on each arqu, v) corresponds to thefluenceprobability ofw on
v, where “influence” is interpreted according to its meanimghie
influence-maximization context [23]. Following a numbemnafrks
on influence maximization [12, 17, 23], the probability ory amc
corresponds to the inverse of the out-degree of the nodevirtaich
that arc is outgoing.

WebGraphtht t p: / / webgr aph. dsi . uni nmi . i t). Thisis the
uk-2007-05 web graph data [9]. For our experiments, we use a
subset containingOM pages and 75M hyperlinks. LikeLast.FM,

the probability of the various arcs are “influence” probitiiei.

NetHEPT(ht t p: / / www. ar Xi v. or g). This graph is created
from the “High Energy Physics - Theory” section of the e-prin
arXiv with papers fromi991 to 2003. Like DBLP, two authors are
connected by directed arcs if they co-authored at least. oflgis
graph was used in [12] for the influence-maximization tasthwi
constant arc probabilitie® (5).

Competing methods. We evaluate the performance of oRQ-
tree by focusing on both the verification strategies proposecti S
tion 5. Particularly, we hereinafter denote RQ-tree-LB the vari-
ant involving lower-bounding-based verification, andB@-tree-
MC the variant involving (Monte-Carlo-)sampling-based fiea-
tion. We compare botiRQ-tree-LB and RQ-tree-MC with the
following baselines:

1 - s
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071¢ 4 s
/ <
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051 = Last.FM --x
3 Flickr e~
DBLP, p=2 e | BioMine -+
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o DBLP,pu=10 -+ 0.05 WebGraph —&—
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Figure 3:Cumulative distribution of arc probabilities.

MC-Sampling. We consider a Monte-Carlo-sampling method [13]
running on the whole graph. We derie deterministic graphs by
sampling the input uncertain graph according to arc pradibialisi
Note that the sampling is performed online, i.e., combindith &
BFS from the source set, in order to improve its efficiencyerev
tually, all nodes that are reachable in at leg&t sampled graphs
form the answer to the reliability-search query. Such albesbas
time complexityO (K (m + n)).

RHT-Sampling. This method was proposed in [20] as a fast al-
ternative to Monte-Carlo sampling for the two-termindiatility
problem with an additional distance threshdldhus, in order to
answer our reliability-search queries, it needs to bertimes, ev-
ery time using a different node in the graph as target nodftem
distance threshold set dsthe diameter of the uncertain graph. Fol-
lowing [20], the time complexity of a single execution RHT is
O(nd), hence, when used for reliability search, its complexity be
comesO(n’d). For this purpose, even being faster than MC sam-
pling for two-terminal reliability, RHT-sampling perforsrworse in
the reliability-search task.

Given its quadratic complexity, we were able to obtain ressfair
RHT in reasonable time only on our smallest datasetsiast.FM
andNetHEPT(on larger graphs such &oMine andFlickr, RHT
could not finish in one day). We report such results in Table 4,
where it can be evinced that our methods drastically oubperf
RHT: up to 2 RQ-tree-MC) and 6 RQ-tree-LB) orders of mag-
nitude faster.

In the remainder of this section we focus on the larger d&gase
thus leaving thdRHT baseline out of the comparison.

Query workload and parameter setting. For single-source
queries, we select a node uniformly at random. For multiolerce
queries, we select uniformly at random a set of nodes fronba su
graph of the original graph. We vary the diameter of the sapigr
from 2 to 6, as these are typical distance values on most real-world
graphs (small-world phenomenon), while, as the number efyqu
nodes is usually small (up to few tens), we vary the cardinali
the query set fron2 to 20. All results are averaged oved0 sets of
nodes, while the probability thresholds varied from0.4 to 0.8.

For all sampling methods, i.e., the baselines andRQrtree-
MC, we observed accuracy convergence on all datasets with a num
ber of sampled around1 000. This is roughly the same number
observed in [20, 28]. Hence, we skt = 1000 for all sampling
methods.

Accuracy assessment criteria. Computing the exact answer to
our reliability-search queries is computationally infiéées due to

the size of our datasets. Hence, to measure accuracy of dhe pr
posedRQ-tree-based methods, we use the answer computed by
MC-Sampling as a proxy. This is a reasonable choiceM§-
Sampling is an unbiased estimator, thus running it for a sufficiently
large number of times, its answer is expected to converdeetceal
answer with high probability.

3We use the code provided by the authors of [20].



Table 4:Comparison betweeRQ-tree and RHT-sampling baseline using  the smaller the arc probabilities, the smaller the numbearo§

smaller graphs: gquery-processing time (sec). On largerpgsuch as in the various sampled graphs. However, aR0-tree-LB gets

BioMine and Flickr, RHT-sampling baseline does not finish in one day. f h babiliti I his i roall
Thus, for larger graphs, we compaRQ-tree with only MC-sampling. aster as the arc probabilities get smaller, as this imifealler-

Last.EM NetHEPT sized candidate sets. Indeed, the running time of Bufhtree-
n RHAT [20]RQ-ree-MC RQ-tree-LB[RH T [20] RQ-tree-MC RQ-tree-LB MC andMC-Sampling is higher orBioMine, which complies with
0.4] 6.21 0.1 0.008 | 2353 15.97 0.010 the higher arc probabilities exhibited by such a datasefu(ei 3).
0.6| 6.21 0.08 0.007 | 2353 15.96 0.008 _ )
08] 621 008 0006 ] 2358 1564 0006 7.4 Pruning power of therQ-tree index

We next provide an insight into the properties of the prodose

Table 5:RQ-tree statistics and index building time. 4 ° ’ ! > JH
RQ-tree index, particularly focusing on its pruning capabilities.

time (sec) size (MB) height  # clusters . : . .
DBLP(z = 5) 1855 123 14 735424 Here we provide evidence of the filtering guaranteed byRfe
Flickr 1649 118 11 80726 tree-candidate-generation phase, with a twofold goal in mind: w
BioMine 2890 203 15 1040750 evaluate the pruning power d&tQ-tree and, as side effect, the

tightness of the upper bound proposed in Section 4.1 whieh th
RQ-tree-candidate-generation phase relies on. We define the two

We assess accuracy usipgecisionandrecall. Denoting byT’ following metrics:

the node set outputted by any selected method arifi'tiye node

set produced bjC-Sampling, we define precision a&22"1 and o Height ratio: the ratio of the number of clusters traversed
—_—— o IT during candidate generation over the total height ofRig
recall as—7=—. Hence, precision and recall 8fC-Sampling are tree:

always 1 so we avoid to report them. o Candidate ratio: the ratio of the candidate-set size, over the

7.2 Indexing performance total number of nodes in the graph.
We report the basic statistics about R@-tree index in Table F:Iearly, the smaller the above measurements, the highgrtire
5. It can be observed that the offline index building time iggu N9 guaranteed bRQ-tree.

modest for all datasets: for instance, building the indeBmMine In Figure 4 we report height ratio and candidate ratidQBLP
(1M nodes andi3M arcs) takes abolk0 minutes. The space re- (all the three variantsklickr, andBioMine Both height ratio and

quirement is contained as well: d@ioMine our index takes ap- candidate ratio remain quite small, i.e., in 404, 0.6] range on
proximately only 200 MB. average, meaning that almost half of nodes are pruned on aver

age. The ratios are never higher than5, being even less than 0.2
7.3 Query-processing performance (height ratio) and less than 0.05 BBLP1Q These results confirm
We now focus on the online query-processing phase of our-meth the u;efulness of theQ-tree in terms of pruning, as well as the
ods. In Table 6 we show precision, recall and query-proogssi effectiveness of the proposed upper bound. We also notétitiat
timé of our RQ-tree-LB and RQ-tree'-MC as well as theviC- the height ratio and the candidate ratio decrease with highas
Sampling baseline, on three larger datasets; we also report theseh'ghem leads to smaller answer sets and thus better pruning.

measurements on different versionsOBLP where the arc prob- As a further insight into the candidate-generation phae?*hz‘m
abilities are varied. SpecificallipBLP2 DBLPS5, andDBLP10in provide in Figure 4 evidence abou} precision (defined a T

Table 6 refer to DBLP graphs with = 2, 5, 10, respectively. whereT is the set produced by ttReQ-tree candidate generation
The accuracy behavior (in terms of precision and recallhef t ~ and T is the MC-Sampling answer set), andid) running time

proposed methods perfectly conforms the design principiebe of the candidate generation. It can be observed that thésfec

two methods:RQ-tree-LB achieves perfect precision, whiRQ- improves as the probability threshold increases and theratza-

tree-MC achieves very high recall( 0.95). It is worth notic- bilities decrease, e.g., precisionlis'5 for n = 0.8 in DBLP with

ing that the recall oRQ-tree-LB is however reasonably high as ¢ = 5. However, in many cases the precision is around (or even

well: up to 0.96, and 0.81 on average. This attests the wpladi below) 0.5, meaning that half of the candidates are not gatteo

the lower bound proposed in Section 5.1. In general, thelreta final solution, thus confirming the need for verification. Riny
RQ-tree-LB increases ag increases. This is due to the lower- times, instead, are decreasing with smaller arc probsiliand
bounding verification method, which is based on the mostyik  larger probability thresholds.

path between source and target nodes: higher probabiligghh

olds leads to tighter lower bounds. MoreovBQ-tree-MC ex- 7.5 Performance varying the source-set size
hibits very high precision too: always 0.95. We next analyze the performance of tR&-tree index for
We also observe that the recall BQ-tree-MC does not re- multiple-source queries. For the sake of brevity, here wrigo
ally depend on arc probabilities in the three variants of it P only on theRQ-tree-LB variant. Table 7 reports query-processing
dataset. The recall ®®Q-tree-LB instead is clearly increasing as  results orDBLP with ;» = 5 andn = 0.6. The table reports recall
arc probabilities decrease. This is due toR@-tree-LB verifica- of our overall query-processing method, precision of thelaate
tion method, which considers the most-likely path betwemnee generation phase, height ratio, and query-processing tvieevary
and target nodes as a lower bound, and the smaller the plitieabi both query-set size2( 5, 10, and20) and query diametet, i.e.,
the tighter the lower bound. the diameter of the subgraph (of the original uncertain lgyfpm

As far as running times, both our methods are evidently faste which the queries are randomly selectdd=£ 2, 4, and6). Note
than theMC-Sampling baseline.RQ-tree-LB is even 3-5 orders that, as the query diameter or the number of query nodesasese

of magnitude faster. Due to its improved accurd®@-tree-MC is it is more likely that the smallest cluster containing ak thuery
generally slower thaRQ-tree-LB, as expected, but it still guaran-  nodes is close to the root of thRQ-tree, thus resulting in lower
tees a significant speed-up of at least one order of magnitude pruning/efficiency. Therefore, an interesting directian future

In addition, RQ-tree-MC and MC-Sampling exhibit improved work is to improve the indexing strategy so to provide higbrem-
efficiency with smaller arc probabilities DBLP. This is because ing capacity as the cardinality of the source set increases.



Table 6:RQ-tree: precision, recall, and query-processing time (sec) owaious datasets (single-source queries).

precision recall query-processing time (sec)
RQ-tree-MC RQ-tree-LB RQ-tree-MC RQ-tree-LB RQ-tree-MC RQ-tree-LB MC
71=0.4 n=0.6 n=0.8|n=0.4 n=0.6 n=0.8 7n=0.4 n=0.6 n=0.8|n=0.4 n=0.6 n=0.8 n=0.41=0.6 n=0.8[n=0.471=0.6 n=0.8[ alln
DBLP2[ 0.95 0.98 0.98 1 1 1 095 096 0.9§ 052 0.75 0.76 152.9414572147|82.5 0.82 0.68] 8114
DBLP5| 0.96 0.99 0.99 1 1 1 0.99 0.99 1075 087 091 43.01 40.48 36.831.5 0.6 0.6|588.15
DBLP1Q 0.96 0.99 0.99 1 1 1 0.97 097 0.99 0.89 091 0.96 38.7 36.15 33/11.4 057 0.7 76.77
Flickr [ 0.97 0.98 0.98 1 1 1 0.98 099 0.99 0.76 0.79 0.83 60.23 58.6 54.y®.21 0.2 0.17/114.29
BioMind 0.95 0.96 0.97] 1 1 1 0.97 098 0.98 0.77 0.81 0.85 6062 5417 4974 1 0.5 0.5|25608
1 N=0.4 mmmm (=08 mmmmm 08 N=0.4 mmmm  n=0. mmmm B N=0.4 mmmm (=08 mmmmm g 1204 mmmm | 1=0.8 mmmm
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dblp2 dblp5 dblp10 flickrbiomine dblp2 dblp5 dblp10 flickrbiomine
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Figure 4:RQ-tree pruning power: height ratio, candidate ratio, candidatergration precision, and candidate-generation time (sec)

Table 7:RQ-tree-LB query-processing results ddBLP (1 = 5, n = 0.6), varying the size of the set of query nodes (first column)thadliameter ¢) of

the subgraph from which these nodes were picked.

# nodes [ recall [ precision (candidate generation) | height ratio [ RQ-tree-LB runtime (sec) | MC runtime (sec)
[d=2 d=4 d=6|d=2 d=41 d=6 |d=2 d=4 d=6|d=2 d=4 d=6|d=2 d=4 d=6
2 0.85 0.86 0.82 | 0.65 0.61 0.55 0.40 0.41 0.44 | 0.60 0.60 0.67 | 1201 1377 1417
5 0.82 0.85 0.82 0.60 0.45 0.24 0.40 0.57 0.81 0.61 0.87 2.50 2498 3063 3137
10 0.82 0.81 0.81 0.55 0.37 0.17 0.40 0.80 0.87 0.60 2.35 3.32 5077 5155 5470
20 0.76 0.76 0.75 0.55 0.17 0.13 0.45 0.93 0.95 0.71 3.41 4.20 7102 7200 7457
Table 8:Scalability analysis using single-source queries wijtk= 0.6 on
the WebGraphdataset. 200 T Roee = 280 [ ROWee »
indexing query proc. E 160 | MC-sample = '}x"':k E 240 | MC-sample ---= ’(;; ™
# nodes# arcs size height  # clusterJ (sec) (sec) & 120 5 - e i‘;ﬂ p -
1M, 15M 62 MB 17 1202754 1221 0.11 g o g 2 e
3M, 50M 177 MB 18 3410221 7312 0.13 § 0 5 ol
5M, 81M 421 MB 19 5810934 | 11273 0.17 1 1
7M,122M | 813 MB 21 9570259 25315 0.21 om0 om0
10M, 175M | 1220 MB 21 11758022 37146 0.27
700000 e 1.1e+06 N
o 2000000 . o 20000 | .
. & 50000 1/ 1 & el e
7.6 Scalability R P |
We analyze the scalability of olRQ-tree on WebGraph For = 2000 T s Qe
. . . . . -sample -sample
this experiment, we consider subgraphs of the origileabGraph S00 % SIS 2000 1 — BEREREA e

with a number of nodesM, 3M, 5M, 7M, and 10M, respectively.
The corresponding index building space and time, as welhas t
query-processing time, are reported in Table 8. We obsbatdhe
index time increases polynomially with the number of noatethée
graph, while the query time is linear in the size of the graich
results assess the high scalability of &@-tree.

7.7 Application: Influence Maximization

The influence-maximizatioproblem [23], whose primary ap-
plication is viral marketing has received a great deal of atten-
tion over the last decade. It requires to find a Sedf £ nodes
that maximize theexpected spread.e., the expected number of
nodes that would be infected by a viral propagation stamesl. i
Theindependent cascade mod@B] is a widely used propagation
model: according to which the expected spread can be fotetlla
aso(S) = 3,c 4 R(S,1).

The problem of finding a sef of k£ nodes that maximizes
o(S) is hard. However, thanks to the submodularityodf), the
Greedy algorithm that iteratively adds t8 the node bringing the
largest marginal gain in the objective function providés- %) ap-
proximation guarantee [23]. Unfortunately, finding the maxm-
marginal-gain node requires to solve#P-complete reliability

# seed nodes # seed nodes

Figure 5: Exploiting RQ-tree in the influence-maximization problem:
comparison to the MC-based baseline in terms of expectezhdand run-
ning time (sec) otast.FM(left) andNetHEPT(right)

problem. Hence, existing approaches usually apply sagpérg.,
Monte Carlo) to estimate the best seed node at each iteration
the Greedy algorithm. Next, we show how the classizeedy al-
gorithm can exploit ouRQ-tree-LB method, thus achieving high
speed-up and paying almost nothing in terms of accuracy.

At each iteration, given the current set of nodgsthe Greedy
algorithm needs to find the node € N \ S that maximizes
> iea B(S U {w},t). We use a histogram-based method to ex-
ploit our RQ-tree. We fix a few probability threshold values in
ascending order, i.en < 72 < ... < np. Let f(S,n;) denote
the size of the reliability-search sBIS (S, n;): we compute the ex-
pected spread of as (S, n,)1, +[f (S, 11p) — f(S. 1lp—1)p—1 +
A [F(Sim2) = £(S,m)]m

We compare thesreedy algorithm coupled with Monte-Carlo
sampling (1000 samples), and the same algorithm equipptd wi
RQ-tree-LB: the results oLast. FMandNetHEPTare reported in
Figure 5 (we focus only on our smallest datasets to allow Na€ell



Greedy to terminate in reasonable time). For accuracy evaluation, [4] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion &l
we measure the expected spread of the node set outputte@ by th sparsest cut. ISTOG 2005.

two competing methods via Monte-Carlo sampling. We observe [5] S.Asthana, O.D. King, F. D. Gibbons, and F. P. Roth. Rititj
that the two methods achieve roughly the same expecteddsprea Protein Complex Membership using Probabilistic Network

while, as far as running time, employiiRQ-tree-LB leads to at
least one order of magnitude of speed-up.

8. RELATED WORK

Reliability is a classic problem studied in device networlks

number of variants to the problem have been defined, inaudin

two-terminal reliability [32], all-terminal reliability{31], and k-
terminal reliability [18], and many solutions have beenpmsed,
either exact (see [3] for a survey) or approximate [13, 2], 2B-
proximate solutions, in particular, have mainly involvedopte-
Carlo) sampling methods [13, 23].

More recently, the proble
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[20,28,34], as well as in the context of clustering [27].tRatarly,
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greater than a user-defined threshold.

However, all existing works on reliability fall into the da of

reliability detection whose goal is to determine the probability of a

certain reliability event. In this work we study a novel tygfeelia-
bility problem, that igeliability search A problem that is closer to
reliability search than the above ones is the problem oftiotel-
based probabilistic reachability [34], which consists éetmining
if two nodes are connected with probability higher than &shr
old. But, like the problem in [20], the input there is a painoides;
hence, applying the methods in [34] to our reliability séanould
lead to quadratic (thus unaffordable) time complexity.

Further research on reliability has concerned the defmitib
polynomial-time upper/lower bounds to reliability prote [7, 10,

11,14, 24, 29]. We have already discussed in Section 4.1 dnd 5

how the bounds proposed in this work differ from the exisbngs.

9. CONCLUSIONS

In this paper we studied reliability search, a novel religpi
problem for uncertain graphs. We definB®-tree, a novel in-
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ficiently and effectively, as confirmed by an extensive expen-
tal evaluation conducted on real-world datas&§-tree provides
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isting sampling methods up to five orders of magnitude in effi-

ciency, while also exhibiting precision and recall usuaty0.95
and> 0.75, respectively.

Our experiments show that the performancér@j-tree can be
further improved when the arc probabilities get higher antiie
size of the source set increases. Thus, a natural direcirdotire
work is to improve the indexing strategy in order to handléedye
multi-source reliability-search queries and higher aabpbilities.
We also plan to study the theoretical properties of the pgego
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