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Abstract. In this paper we introduce graph-evolution rules, a novel type
of frequency-based pattern that describe the evolution of large networks
over time, at a local level. Given a sequence of snapshots of an evolving
graph, we aim at discovering rules describing the local changes occur-
ring in it. Adopting a definition of support based on minimum image we
study the problem of extracting patterns whose frequency is larger than
a minimum support threshold. Then, similar to the classical association
rules framework, we derive graph-evolution rules from frequent patterns
that satisfy a given minimum confidence constraint. We discuss merits
and limits of alternative definitions of support and confidence, justify-
ing the chosen framework. To evaluate our approach we devise GERM
(Graph Evolution Rule Miner), an algorithm to mine all graph-evolution
rules whose support and confidence are greater than given thresholds.
The algorithm is applied to analyze four large real-world networks (i.e.,
two social networks, and two co-authorship networks from bibliographic
data), using different time granularities. Our extensive experimentation
confirms the feasibility and utility of the presented approach. It further
shows that different kinds of networks exhibit different evolution rules,
suggesting the usage of these local patterns to globally discriminate dif-
ferent kind of networks.

1 Introduction

With the increasing availability of large social-network data, the study of the
temporal evolution of graphs is receiving a growing attention. While most re-
search so far has been devoted to analyze the change of global properties of
evolving networks, such as the diameter or the clustering coefficient, not much
work has been done to study graph evolution at a microscopic level. In this paper,
we consider the problem of searching for patterns that indicate local, structural
changes in dynamic graphs. Mining for such local patterns is a computationally
challenging task that can provide further insight into the increasing amount of
evolving-network data.

Following a frequent pattern-mining approach, we introduce the problem of
extracting Graph Ewvolution Rules (GER), which are rules that satisfy given
constraints of minimum support and confidence in evolving graphs. An example
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Fig.1. A Graph Evolution Rule extracted from the DBLP co-authorship network.

of areal GER extracted form the DBLP co-authorship network is given in Fig. 1:
nodes are authors, with an edge between two nodes if they co-authored a paper.

In this specific example, the node labels represent a class of degree of the
node: the higher the label the higher the degree of the node. It is important
to note that the label refers to the degree of the node in the input graph, not
in the rule. In particular the label 3 indicates a node with degree > 50. In
general, node labels may represent any property of a node. The labels on the
edges instead are more important as they represent the (relative) year in which
the first collaboration between two authors was established. Intuitively (later
we provide all the needed definitions) the rule might be read as a sort of local
evidence of preferential attachment, as it shows a researcher with a large degree
(label 3) that at time ¢ is connected to four medium degree researchers (labels 2),
and that at time t+1 will be connected to another medium degree researcher. The
definition, extraction and subsequent empirical analysis of such Graph Evolution
Rules (GER) constitute the main body of our work.

The remainder of the paper is organized as follows: Section 2 describes the
problem under investigation and defines the novel kind of pattern we are inter-
ested in. In Section 3 we describe the details of our algorithm. We report on our
experimental results in Section 4 and present related work in Section 5. Finally,
in Section 6 we discuss possible future research directions and in Section 7 we
provide our conclusions.

2 Patterns of graph evolution

2.1 Time-evolving graphs

We start by describing how we conceptually represent an evolving graph, and
subsequently discuss how to actually represent the graph in a more compact
format. As usual the terminology G = (V, E, \) is used to denote a graph G
over a set of nodes V and edges E C V x V., with a labeling function A :
VUE — X, assigning to nodes and edges labels from an alphabet Y. These labels
represent properties, and for simplicity we assume that they do not change with
time. As an example, in a social network where nodes model its members, node
properties may be gender, country, college, etc., while an edge property can be
the kind of connection between two users. The evolution of the graph over time
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Fig. 2. Relative time patterns extracted from two different samples of the DBLP co-
authorship network: respectively 1992-2002 for (P1), and 2005-2007 (P,). Dataset de-
tails are given in Sec. 4.1.

is conceptually represented by a series of undirected graphs G, ...,Gr, so that
Gy = (V4, Ey) represents the graph at time ¢. Since G, ..., G represent different
snapshots of the same graph, we have V; C V and E; C E. For simplicity of
presentation, we assume that as the graph evolves, nodes and edges are only
added and never deleted: i.e., V1 CVo C ... Vpand E; C E5 C ... Ep.

It is worth noting that the number of edge deletions in social networks is
so small to be negligible when analyzing the temporal evolution of networks.
However, in our framework we can handle also deletions by slightly changing the
matching operator as described in Section 6.

Our mining algorithm represents the dataset by simply collapsing all the
snapshots G1,...,Gr in one undirected graph G, in which edges are time-
stamped with their first appearance. Thus, we have G = (V,E) with V =
Uil Vi =Vrand E = U;‘ll E; = Er. To each edge e = (u,v) a time-stamp
t(e) = argmin;{E, | e € E,} is assigned. Note that time-stamps on the nodes
may be ignored as a node always comes with its first edge and hence this infor-
mation is implicitly kept in edge time-stamps. Overall, a time-evolving graph is
described as G = (V, E, t, \), with ¢ assigning time-stamps to the set of edges E.

2.2 Patterns

Consider a time-evolving graph G, as defined above. Intuitively a pattern P of
G is a subgraph of G that in addition to matching edges of G also matches their
time-stamps, and if present, the properties on the nodes and edges of G.

Definition 1 (Absolute-time pattern).

Let G = (V,E,t,\) and P = (Vp,Ep,tp,\p) be graphs, where G is the time-
evolving dataset and P a pattern. We assume that P is connected. An occurrence
of P in G is a function ¢ : Vp — V mapping the nodes of P to the nodes of G
such that for all u,v € Vp:

i) (u,0) € Ep = (p(u), (v)) € B,
it) (u,v) € Ep = t(p(u), 9(v)) = t(u,v), and
iii) Ap(v) = Mp(0)) A e (1, 0) = M (@ (), (1))



In case no labels are present for edges or nodes, the last condition (i) is ignored.
Two examples of patterns from the DBLP co-authorship network are shown in
Fig. 2. Those examples motivate us to make two important decisions. First, since
our goal in this paper is to study patterns of evolution we naturally focus on
patterns that refer to more than one snapshots such as the examples in Fig. 2.
In other terms we are not interested in patterns where all edges have the same
time-stamp. The second decision is based on the following observation. Consider
pattern P;: arguably, the essence of the pattern is the fact that two distinct pairs
of connected authors, one collaboration created at time 0, and one at time 1, are
later (at time 2) connected by a collaboration involving one author from each
pair, plus a third author. We would like to account for an occurrence of that
event even if it was taking place at times, say, 16, 17 and 18. To capture this
intuition we define relative-time patterns.

Definition 2 (Relative-time Pattern). Let G and P be a graph and pattern
as in Definition 1. We say that P occurs in G at relative time if there exists a
A € R and a function ¢ : Vp — V mapping the nodes of P to the nodes in G
such that Yu,v € Vp

The difference between Definitions 1 and 2 is only in the second condition.
As a result of Definition 2, we obtain naturally forming equivalence classes of
structurally isomorphic relative time patterns that differ only by a constant on
their edge time-stamps. To avoid the resulting redundancies in the search space
of all relative time patterns we only pick one representative pattern for each
equivalence class, namely the one where the lowest time-stamp is zero.

In the remainder of this paper we focus on relative time patterns, as they
subsume the absolute time case: they are both more interesting and more chal-
lenging to mine.

2.3 Support

Next we discuss the support measure we use. Let Gy be the set of all graphs
over an alphabet Y. We define support as a function o : Gs; X G5 +— N. Given a
host-graph G and a pattern P, the value of o(P, G) reflects the support of the
pattern in the host-graph.

Defining a concept of support for the single graph setting is a non-trivial task,
which has received attention recently [14, 8,4, 5]. The most important property
that a definition of support must satisfy is anti-monotonicity, that is, for all
graphs G, P and P’, where P is a subgraph of P’, it must hold that o(P,G) >
o(P’,G). This property is exploited by pattern miners to prune the search space.
Anti-monotonicity holds trivially in the transactional setting, but is more tricky
for the single-graph setting. For instance, while the total number of occurrences
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Fig.3. (a): a graph with three different occurrences of a pattern evaluates to
o = 2. (b): a graph H with relative edge labels and all possible relative subgraphs
A,B,C,D,E,F,G.

of a pattern is intuitively a meaningful measure, it is not anti-monotonic. As
an example consider Fig. 4(b): the number of occurrences in the host graph Y
of the pattern indicated as “body” is 1, while the number of occurrences of its
supergraph indicated as “head” is 2, thus violating anti-monotonicity.

A first feasible support measure was proposed in [14] followed by a refine-
ment published in [8]. Both measures rely on solving a maximum independent
set problem MIS which is NP-complete. We employ the minimum image based
support measure recently introduced in [4] which does not require solving a MIS.
This measure is based on the number of unique nodes in the graph G = (V, Fg)
that a node of the pattern P = (Vp, Ep) is mapped to, and defined as follows:

Definition 3 (Support).

o(P,G) = m%/n | {©i(v) : @i s an occurrence of P in G} |
veVp

By taking the node in P as reference which is mapped to the least number of
unique nodes in G, the anti-monotonicity of the measure is ensured. An example
of minimum image based support is given in Fig. 3(a). Even if the pattern has
3 occurrences in the host graph, it has support ¢ = 2. In fact the lower white
node of the pattern can only be mapped to nodes 1 and 8 in the host graph.

The advantage of this definition over other definitions introduced [14, 8] is
twofold. From a practical point of view it is computationally easier to calcu-
late since it does not require the computation of all possible occurrences of
a pattern-graph in the host-graph. Additionally it does not require to solve a
maximal independent set problem for each candidate pattern. From a theoreti-
cal perspective we know that this definition is an upper bound for the according
overlap based definitions [4, 8]. Hence the support according to this definition is
closer to the real number of occurrences in the graph.

2.4 Rules and Confidence Measure

The support of a pattern can provide insight into how often such an event may
happen compared to other specific changes, but not how likely is a certain se-
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Fig. 4. Two example host-graphs X and Y illustrating different problems with support
and confidence notions.

quence of steps. To acquire this information we need to decompose a pattern into
the particular steps and subsequently determine the confidence for each transi-
tion. Each step can be considered as a rule body— head with both body and head
being patterns as defined in the previous section. Unfortunately, this does not
yet solve our problem, but rather introduces two important questions:

1. How to decompose a pattern into head and body?
2. What are reasonable definitions of confidence?

Regarding the decomposition consider pattern H in Fig. 3(b). An occurrence
of H implies an occurrence of all its sub-patterns A—G. Similarly to the definition
of association rules all A — G can be considered candidate-body in order to form
a graph evolution rule with pattern H as head. Fortunately, most of those pos-
sibilities can be discarded immediately. First, we are interested in evolution and
hence only care about rules describing edges emerging in the future. This allows
us to discard bodies A, C, D, E, and F thus only leaving B and G. Furthermore,
the step should be as small as possible to allow for a high granularity wherefore
we would drop candidate-body G in the example, leaving B as body for the
head H. Following the same reasoning, G would be the only choice as body for
B as head. Similar the other rules in the example are E — A,D — C,G — E.
The natural body thus would be the head discarding all the edges from the last
time-step of the target-pattern. More formally:

Definition 4 (Graph Evolution Rule). Given a pattern head Py the body Pg
is defined as: Ep = {e € Ep | t(e) < maxe-cpy, (t(e*))} and Vg = {v € Vi |
deg(v, Eg) > 0}, where deg(v, Eg) denotes the degree of v with respect to the
edges in Eg. Moreover we constrain Pg to be connected. Finally, the support of
a graph evolution rule is the support of its head.

This definition yields a unique body for each head and therefore a unique
confidence value for each head. This allows us to represent the rules by the head
only. Note that the definition disallows disconnected graphs as body due to the
lack of a support-definition for disconnected graphs. As a consequence not all
frequent patterns can be decomposed into graph evolution rules.

Consider for instance pattern P; in Fig. 2: after removing all edges with the
highest time-stamp, and discarding disconnected nodes, the graph that remains



still contains two disconnected components (the one-edge component with label
1, and the one with label 0). Since the support is not defined for such discon-
nected pattern, P; can not be decomposed to be a GER. On the other hand, P,
can be decomposed: in fact after removing all edges with the maximum time-
stamp, and subsequently the disconnected node, we obtain a connected graph
that will become the body of the rule for which P, is the head. Note that a
GER can be represented in two different ways: either explicitly as two patterns
(body—head), or implicitly by representing only the head as P in Fig. 2. This
is possible since there is a unique body for each head.

Finally, we have to choose a reasonable definition of confidence of a rule.
Following the classic association rules framework, a first choice is to adopt the
ratio of head and body supports as confidence. With the support being anti-
monotonic this yields a confidence value which is guaranteed to be between zero
and one. However, Fig. 4(a) shows that this definition may in some cases lack a
reasonable semantic interpretation. In the upper host-graph X we find three pos-
sible ways to close a triangle given the edges from time-stamp 7. The confidence
of 1 suggests that all of these will close to form triangles, while the graph shows
that only one actually does. To overcome this counterintuitive result, we inves-
tigated if the ratio of number of occurrences of head and body can be employed
to solve this issue. While this definition of confidence allows for more reasonable
semantics for the case in Fig. 4(a), it has the clear disadvantage that, due to
the lack of anti-monotonicity, it may yield confidence values larger than 1, as in
Fig. 4(b). In our experiments we compare the two alternative definitions showing
that the minimum-image-based support is an effective and useful concept, while
the occurrence-based definition has unpredictable behavior. Moreover, while the
support is already available as it is computed for extracting the frequent pat-
terns, the occurrence based confidence needs a separate and costly computation.

3 Mining graph evolution rules

GERM is an adaptation of the algorithm in [4], which was devised to prove the
feasibility of the minimum image based support measure, and which in turn,
was an adaptation of gSpan [22]. Thus, GERM inherits the main characteristics
from those algorithms. In particular, GERM is based on a DFS traversal of the
search space, which leads to very low memory requirements. Indeed, in all the
experiments that we performed the memory consumption was negligible.

We next describe in detail how to adapt gSpan to GERM whereas the main
changes are in the SubgraphMining method shown as Algorithm 1. The first key
point is that we mine patterns in large single graphs, while gSpan was developed
to extract patterns from sets of graphs. The part most involved in adapting gSpan
is the support computation in line 7. Thus we start from the implementation
of [4], where gSpan support calculation is replaced by the minimum image based
support computation, without the need for changing the core of the algorithm.

One of the key elements in gSpan is the use of the minimum DFES code, which
is a canonical form introduced to avoid multiple generations of the same pattern.



Algorithm 1 SubgraphMining(GS,S, s)
if s # min(s) then return // using our canonical form
S—Sus
generate all s’ potential children with one edge growth
Enumerate(s)
for all c, c is s’ child do

// using definition 8 based on definition 1 or definition 2

if support(c)> minSupp then

s—c¢

SubgraphMining(GS, S, s)

We need to change this canonical form in order to enable GERM to mine
patterns with relative time-stamps (cf. line 1). As explained after Definition 2, we
only want one representative pattern per equivalence class, namely the one with
the lowest time-stamp being zero. This is achieved by modifying the canonical
form such that the first edge in the canonical form is always the one with the
lowest time-stamp, as compared to gSpan where the highest label is used as a
starting node for the canonical form. Any pattern grown from such a pattern by
extending the canonical form will have the same lowest time-stamp, which we set
to zero by a simple constraint on the first edge. Hence we guarantee to extract
only one pattern per equivalence class which dramatically increases performance
and eliminates redundancy in the output.

Note that when matching a pattern to the host-graph we implicitly fix a
value of A, representing the time gap between the pattern and the host graph.
In order to complete the match all remaining edges must adhere to this value
of A. If all the edges match with the A set when matching the first edge, the
pattern is discovered to match the host-graph with that value of A.

Another important issue is to be able to deal with large real-world graphs,
in which several nodes have high degree (the degree distribution in our datasets
follows a power law). In typical applications of frequent-subgraph mining in the
transactional setting, such as biology and chemistry, the graphs are typically of
small size and they are not high-degree nodes. Dealing with large graphs and
high degrees give rise to increased computational complexity of the search. In
particular, having nodes with large degree increases the possible combinations
that have to be evaluated for each subgraph-isomorphism test. We thus equip
GERM with a user-defined constraint specifying the maximum number of edges
in a pattern. This constraint allows to deal more efficiently with the DFS strategy
by reducing the search space. Our experiments confirm that the total running
time is much more influenced by the maximum-edge constraint than by the
minimum support threshold.



Table 1. Dataset statistics: Number of nodes and edges and resulting average degree
for the total graph as well as for the largest connected component (LCC) out of all
connected components (CC). Further the growth rate in terms of edges: total growth
as ratio between the graph size at the final and the initial time-stamps, and average
growth rate per time-stamp.

LCC Growth Rates
Dataset |Date |V| |E| avg T #CC| |V| |E| avg| total avg
deg deg
flickr-month |03-05 147 241 1.64 24 16 74 182 2.43] 60347 2.832
flickr-week [02-05 149 246 1.64 76 16 76 186 2.45|246331 0.241
y!360-month|04-05 177 205 1.16 10 17| 110 155 1.40| 68470  5.150
y!360-week |04-05 177 205 1.16 41 17| 110 155 1.40| 68470  0.834
arxiv92-01 |92-01 709 289 4.08 10 6 49 260 5.32 803 1.691
dblp92-02 |92-02 129 277 2.15 11 13 83 220 2.63 25 0.408

dblp03-05 [03-05 109 233 2.15 3 14 53 153 2.88 3 0.871
dblp05-07 |05-07 135 290 2.15 3 16 72 201 2.76 3 0.749
x1000 x1000 x1000|x 1000 x1000

4 Experimental Results

In this section, we report our experimental analysis. The GERM algorithm was
implemented in C++. All the experiments were conducted on a Linux cluster
equipped with 8 Intel Xeon processors at 1.8Ghz and 16Gb of RAM.

4.1 Datasets

We conducted experiments on four real-world datasets: two social networks
(Flickr and Y!360) and two bibliographic networks (DBLP and arXiv). Table 1
reports statistics on the resulting graphs.
Flickr (http://www.flickr.com/): Flickr is a popular photo-sharing portal.
We sampled a set of Flickr users with edges representing mutual friendship and
edge time-stamp the moment when the bidirectional contact was established.
We generated one graph with monthly and one with weekly granularity.
Y!360 (http://360.yahoo.com/): Yahoo! 360° is an online service for blogging.
Again we sampled a set of users and proceed as in the Fickr dataset. In this case
the monthly and weekly datasets contain exactly the same time period.
DBLP (http://www.informatik.uni-trier.de/~ley/db/): This dataset is
based on a recent snapshot of DBLP, which has yearly time granularity. Ver-
tices represent authors and edges represent the co-authorship relation. The edge
time stamps represent the year of the first co-authorship. Three different graph
snapshots were extracted, for three different years.
arXiv (http://arxiv.org/): Another co-authorship graph dataset, extracted
from the arXiv repository. The resulting graphs arziv92-01 contain co-authorship
relations that emerged in the years 1992 to 2001 with a yearly time granularity.
As discussed in Section 2, our framework allows to have vertex and edge
labels that represent additional information. We experiment with node labels
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Fig. 5. (a)—(g): comparison of confidence of graph evolution rules in different networks.
(h) and (i): comparison of support of patterns in different networks.

that are based on two graph-theoretic measures: the degree and the closeness
centrality. These measures change as the graph evolves. To obtain static labels
the measures are computed on the whole graph, corresponding to the last time
stamp and then they are discretized in 5 bins.

4.2 Results
We analyze the experimental results with regard to the following questions:

Q1 Do the extracted patterns and rules characterize the studied network?

Q2 Do different time granularities influence the confidence of the rules?

Q3 How do the different confidence definitions compare?

Q4 How do the parameters and the type of dataset influence the number of
derivable rules, the number of patterns obtained, and the running time?

Q1: Discriminative analysis. Fig. 5 compares different pairs of datasets in
terms of the confidence of extracted rules. For each pair-wise comparison we
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show the scatter plot of the confidence of the rules that are (i) most frequent
in each dataset, and (i) common in both datasets. The plots allow for several
interesting observations. First, Fig. 5(a), (b) and (c) show that the confidence
of the extracted rules are different between a co-authorship network (arXiv and
DBLP) and a social network (Y!360).* On the other hand, the confidence of
rules are similar between the two co-authorship networks (figure (d)) and the
two social networks (figures (e)-(g)). Thus, the plots confirm our claim that
graph evolution rules characterize the different types of networks.

Fig. 5 (h) and (i) compare the same two datasets as in figures (¢) and (g),
but using the measure of support instead of confidence. One notices that the
measure of support cannot be used to characterize different types of networks.

Q2: Time-granularity. Fig. 6(a) is the scatter plot of confidence of rules ex-
tracted from the same network but with different time granularity. The col-
ors/shapes in the plot correspond to the difference between maximum time
stamp on an edge in the head (MTH) and maximum time stamp on an edge
in the body (MTB) of the rule. We notice that the rules form three clear clus-
ters (shown with different colors/shapes and the corresponding regression lines)
that correspond to the different between the maximum time stamp in the the
head and the body of each rule. In particular, we see that rules that have higher
weekly confidence than monthly correspond to a larger difference MTH—MTB.
This observation can be explained if we think about confidence as prediction:
the difference MTH—MTB can be thought as the temporal gap that must be
bridged by a prediction task, and clearly predicting further in the future is more
difficult (i.e., lower confidence).

Q3: Confidence measures. Fig. 6(b) shows that the two confidence mea-
sures disagree. A more thorough investigation shows that all the rules with an
occurrence-based confidence exceeding 200 have the most simple body: one sin-
gle edge. Furthermore, all those rules span 3 or 4 time-steps from body to head.
Given that all those rules share the same simplistic body, which can be matched

4 Using Flickr instead of Y!360 gives similar results.



max_edges = 5 ° min_supp = 15K

Se+d 2 Te+7 max_edges = 6
8 1200000
> —e— dblp03-05 g)u»e dblp03-05 60-months
T der - 1000000
T ders dblp05-07 S s ° dblp05-07 O ° Y1360-weeks
Qo -
o I S 800000
D 5eis T te+s S
) c @
= Q £ 600000
) 3 1ess Y
€ e S
Ezens D renn £ so000
c © S
2 e \2 E tevt < 200000
= °
< 1e+0 . o
0 2000 4000 6000 8000 10000 12000 14000 16000 2 25 30 35 40 45 50 55 60 65 4000 5000 6000 7000 8000 8000 10000 11000
min_sup max_edge min_sup

max_edges = 5 min_supp = 15K max_edges = 6

3
8

N

number of frequent patterns
number of frequent patterns
number of frequent patterns

0
0 2000 4000 6000 8000 10000 12000 14000 16000 25 30 35 40 45 50 55 60 65 4000 5000 6000 7000 8000 9000 10000 11000

min_supp max_edge min_sup

(d) (e) ()

Fig. 7. Running time and number of patterns found with varying min. support and
max. edge thresholds.

anywhere, a prediction task, especially at 3 or 4 steps into the future, is doomed
to fail. On the other hand, the support-based confidence, assigns score below 0.2
to all rules with the simplistic body — declaring them almost meaningless — thus
indicating that support-based confidence is a more appropriate measure to use.

Q4: Influence of parameters. We perform further experimentation on the
number of extracted rules and the running time of the algorithm. Fig. 6(c)
shows the number of valid graph evolution rules as percentage of the number
of frequent patterns found for various thresholds of minimum confidence. This
is done on one bibliographic and one social network, with and without node
labels. In all cases, the number of rules is close to 80% of the number of frequent
patterns. The results reaffirm the observation from Fig. 6(a), namely, that rules
extracted from a dataset with weekly granularity have higher confidence than
rules extracted from a dataset with yearly granularity.

Fig. 7(e) shows that the number of extracted patterns grows as a function
of the number of edges allowed in the pattern. This behavior is expected as the
number of possible graphs increases exponentially with the number of edges.
Fig. 7(d) shows another typical result: lowering the support threshold allows for
more complex patterns that contain more edges, and thus a similar increase in
the number of extracted patterns.

Fig 7(a)-(b) show that the running time is affected more by the maximum-
edge than the minimum-support constraint. While the increase is almost linear
with decreasing minimum support, the running time grows exponentially with
an increasing maximum edge size.
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Fig. 8. Running time and number of patterns found on networks with labelled nodes
with varying level of minimum support.

A more interesting observation can be made from Fig. 7(c) and (f), in which
we compare the Y!360 graph for the two different time granularities. The weekly
graph has 41 edge labels and is more diverse than the monthly graph, which
has only 10. Comparing the two datasets, we see that while the running times
are very different, the number of extracted patterns is almost the same. The
explanation of this apparent discrepancy is the following: With respect to the
number of patterns, notice that, on one hand, more edge labels allow for more
patterns to be found, on the other hand, less edge labels allow patterns to be
found more repeatedly. Thus for a fixed number of edges, there are more high-
support patterns in the graph with the few edge labels, and more low-support
patterns in the graph with the many edge labels. With respect to the running
times, more patterns of smaller size can be found in the graph with the many edge
labels, and for those small patterns the subgraph-isomorphism problem is easier
to solve. Furthermore, it is easier to encounter a non-matching edge earlier, thus
being able to terminate earlier the search-branch for the subgraph-isomorphism.

Similar results hold for graphs with labelled nodes, as shown in Fig. 8. How-
ever, in the case of node labels, the introduced diversity has the effect of reducing
the number of patterns found, and the running time.

5 Related Work

Several papers have focused on the global evolution of networks. For instance,
Backstrom et al. [2] studied the evolution of communities in social networks,
and Leskovec et al. [16] discovered the shrinking diameter phenomena on time-
evolving networks. On the other hand, studying network evolution at a more
local level, Leskovec et al. [15] used a methodology based on the maximum-
likelihood principle and they showed that edge locality plays a critical role in
the evolution of networks.

Other recent papers present algorithmic tools for the analysis of evolving
networks. Tantipathananandh et al. [20] focus on assessing the community af-
filiation of users and how it changes over time. Sun et al. [18], apply the MDL
principle to the discovery of communities in dynamic networks. The main differ-



ence of the work of Sun et al. [18] from previous work such as [1, 19] is that they
develop a parameter-free framework. However, as in [20], the focus lies on iden-
tifying approximate clusters of users and their temporal changes. Ferlez et al. [7]
use the MDL principle for monitoring the evolution of a network.

Desikan and Srivastava [6] study the problem of mining temporally evolv-
ing web graphs. Three levels of interest are defined: single node, subgraphs and
whole graph analysis, each of them requiring different techniques. Inokuchi and
Washio [11] propose a fast method to mine frequent subsequences from graph-
sequence data defining a formalism to represent changes of subgraphs over time.
However the time in which the changes take place is not specified in the pat-
terns. Liu et al. [17] identify subgraphs changing over time by means of vertex-
importance scores and vertex-closeness changes in subsequent snapshots of the
graphs. The most relevant subgraphs are hence not the most frequent, but the
most significant based on the two defined measures. The paper that is most re-
lated to our work is the one by Borgwardt et al. [3] who represent the history
of an edge as a sequence of 0’s and 1’s representing the absence and presence of
the edge respectively. Then conventional graph-mining techniques are applied to
mine frequent patterns. However, there are several differences to our approach.
First, the employed mining algorithm GREW is not complete, but heuristic.
Further, the overlap-based support measure used requires solving an maximal
independent set problem for which a greedy algorithm is used. Another compu-
tational issue with their approach is the extension of an edge in the so-called
inter-asynchronous FDS case. Accordingly the size of the networks analyzed in
the paper is rather small.

Various proposals for mining frequent patterns in the single graph context [14,
21, 8,4] were discussed in Section 2. A recent paper by Calders et al. [5] intro-
duces a new measure named minimum clique partition, which analogous to the
maximal independent set is based on the notion of an overlap graph and thus
requires solving an NP-complete problem. They prove that support measures
based maximal independent set and minimum clique partition are the minimal
and the maximal possible meaningful overlap measures, and show that [12] intro-
duced a function which is sandwiched between these two measures; computable
in polynomial time. However, any of those measures requires computing an over-
lap graph for each candidate pattern, which is a costly operation in itself due to
requiring enumerating all occurrences of a pattern.

6 Extensions and future work

In this section we discuss briefly how to relax some of the restrictions of our
problem definition.

Consider first the pattern H in Fig. 3(b). Imagine that, for a particular
dataset, it is the case that when there is a star of size 3 an edge between two
peripheral nodes appear. Pattern H captures partly this phenomenon, but is too
“specific” as it emphasizes that the star was formed in particular time instances
before the appearance of the last edge. A more general pattern would be to
replace the time-stamp of the last edge with T', and the time-stamp of all the



edges in the star with the constraint “< 77, which will have to be satisfied when
tested with the time-stamps of the host graph. We plan to extend our algorithm
to experiment with this idea as a continuation of our work.

For sake of presentation, in Section 2 we assumed that graphs can only grow in
time. However, our approach can be easily extended to handle edge-deletions if an
edge can appear and disappear at most once. The extension would consider two
time-stamps t; (time of insertion) and ¢p (time of deletion) on each edge instead
of the single time ¢. By modifying definitions 1 and 2 condition (i¢) to V(u,v) €
Ep it is t;(p(u),p()) = tr(u,v) + A and tp(p(u), p(v)) = tp(u,v) + A.

We did not implement the above matching since two out of four datasets
(arXiv and DBLP) are by definition only growing (no deletions), and deletions
are rare in the other two. As future work we plan to incorporate deletions and
study networks with a higher likelihood of such events.

In our approach, we have not considered node or edge relabelling so far.
Considering node and edge relabeling is very interesting, as in many graphs,
such as social networks, the properties of nodes and edges change over time. For
example, in social-network analysis it would be interesting to study the change
of leadership in communities and its effects.

Besides all the above, which are possible extensions to the type of patterns
we are able to mine, we would like to go further by leveraging the concept of
rule confidence, and designing a paradigm that will allow us to predict graph
evolution, and that, together with GERM, will provide helpful tools analyzing
datasets of dynamic graphs.

7 Conclusions

Following a frequent pattern mining approach, we defined relative time patterns
and introduced introduced the problem of extracting Graph Fvolution Rules,
satisfying given constraints of minimum support and confidence, from an evolv-
ing input graph. While providing the problem definition we discussed alternative
definitions of support and confidence, their merits and limits. We implemented
GERM an effective solution to mine Graph Evolution Rules, and extensively test
it on four large real-world networks (two social networks, and two co-authorship
networks), using different time granularities. Our experiments confirmed the fea-
sibility and the utility of our framework and allowed for interesting insights. In
particular we showed that Graph Evolution Rules with their associated concept
of confidence, indeed characterize the different types of networks.

Availability. The executable code of the GERM software is freely available at:
http://www-kdd.isti.cnr.it/ berlingerio/so/gm/.
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