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ABSTRACT

In this paper we study the community structure of endorse-
ment networks, i.e., social networks in which a directed edge
u → v is asserting an action of support from user u to user
v. Examples include scenarios in which a user u is favoring

a photo, liking a post, or following the microblog of user v.
Starting from the hypothesis that the footprint of a com-

munity in an endorsement network is a bipartite directed
clique from a set of followers to a set of leaders, we apply fre-
quent itemset mining techniques to discover such bicliques.
Our analysis of real networks discovers that an interesting
phenomenon is taking place: the leaders of a community are
endorsing each other forming a very dense nucleus.

Categories and Subject Descriptors: H.4.3 [Informa-
tion Systems Applications]: Communications Applications

General Terms: Experimentation.

Keywords: Endorsement Social Networks, Communities.

1. INTRODUCTION

Understanding the viral spread of information in social
media, modeling how information propagation relates to the
underlying community structure, and identifying influential
users, are all related tasks and important challenges with
potential high returns. As a step in the direction of under-
standing information propagation and identifying influential
users, in this paper we study the community structure of en-
dorsement networks, i.e., networks in which a directed edge
u → v is asserting a unit of support from user u to user v.
For instance in Flickr, a user u may comment or favor a

photo of another user v. It might also be the case that u

admires v’s photos and wants to be updated on v’s future
posts: in this case u may add v as a contact. Indeed in Flickr
contacts are unilateral, not necessarily symmetric, and they
represent endorsement, not friendship. On the other hand,
when a user u declares another user v as friend or family,
the reason is that u wants to share her photos with v, and
therefore this link represents social affinity rather than en-
dorsement. As another example, in microblogging services
such as Twitter, users post short messages which are dis-
played on their profile page and delivered to the author’s
subscribers who are known as followers. Being a follower
is an explicit form of endorsement. In some cases a user
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u might “retweet” a post of user v, thus propagating the
content created by v.

Analyzing endorsement networks and understanding their
community structure, can lead to deeper insights in the
leaders-followers relationship, and ultimately, to mastering
how information and user-generated content is propagating.
The applications are various, ranging from marketing and
surveying, to politics and campaigning.

We start from the hypothesis that the footprint of a com-
munity in a social endorsement network is a biclique from a
set of followers to a set of leaders. Recall that, for a bipar-
tite subgraph formed by node sets A and B to be a biclique,
every possible link from nodes in A to nodes in B must
be present. Trough our analysis of real-world endorsement
networks we achieve two important insights.

Large cores: endorsement networks contain large bi-
cliques from a set of followers to a set of leaders.

Very dense nuclei: the set of leaders (nucleus) of a core
almost always exhibits an extremely high internal density.

2. CORES, NUCLEI AND THEIR DENSITY

We denote the endorsement network by G = (V,E), where
V is a set of nodes and E is a set of directed edges. A directed
edge (u, v) ∈ E indicates an action of endorsement from
node u to node v. A core C = (L,F ) of the network G

consists of two disjoint subsets of V , i.e., L,F ⊆ V with
L ∩ F = ∅, so that for each u ∈ F and v ∈ L it is (u, v) ∈
E. The set L represents the leaders of the core, and set F

represents the followers of the core. The set of leaders L is
also called the nucleus of the core. Given a core C = (L,F ),
we define the size of the core s(C) to be the size of the leader
set L, i.e., s(C) = |L|, and the support of the core σ(C) to
be the size of the follower set F , i.e., σ(C) = |F |.

Given an endorsement network G, a threshold value s0 on
core size, and a threshold value σ0 on core support, we seek
to find all cores C in G that have size s(C) ≥ s0 and support
σ(C) ≥ σ0. It is almost immediate that this is an instance of
frequent-itemset mining [1]. Among the various strategies to
deal with the patterns explosion problem, an interesting one
is to consider only maximal frequent itemsets [2]. A maximal
frequent itemset is simply an itemset which is frequent and
has no frequent superset. In our context this means that
given σ0 we are not interested in a core where the nucleus of
leaders is X, if the nucleus X∪{v} has still enough followers.
The benefit of extracting only the maximal nuclei is twofold:
(i) fewer and more interesting cores, and (ii) more efficient
computation.

Given a core C = (L,F ), we define the leader-leader den-

sity of the core δLL(C) to be the internal density of the leader
set L, that is the fraction of the number of all edges between
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Table 1: Network Statistics. n: number of nodes; m: number of edges; d̄: average degree; max din: maximum
in-degree; max dout: maximum out-degree; R: reciprocity; αin: exponent of the power-law of the in-degree dis-
tribution; αout: exponent of the power-law of the out-degree distribution; maxCC: size of the largest (strongly)
connected component; |CC|: number of the (strongly) connected components; c: clustering coefficient.

Network n m d̄ max din max dout R αin αout maxCC |CC| c

Flickr-E 826 829 65 851 110 79.6 22 214 15 090 0.21 1.6 1.7 486 210 (58.80%) 341 604 0.08
Jaiku 31 534 231 006 7.3 2 324 48 0.44 1.7 1.1 21 937 (69.57%) 17 0.06
Flickr-S 687 091 10 122 046 14.7 7 610 2 867 0.48 2.1 1.8 479 127 (69.73%) 334 933 0.04
Y!360 1 921 351 7 230 996 3.8 260 260 1.00 2.5 2.5 1 463 264 (76.16%) 150 773 0.03

Table 2: For various values of s0 and σ0: numbers
of cores found (column 3); total number of nodes
which are follower (respectively, leader) in at least
one core, i.e., F = {v | ∃C = (F,L) ∧ v ∈ F}, and
L = {v | ∃C = (F,L) ∧ v ∈ L}; number of nodes that
are leader in one core and follower in another one;
average leader-leader and follower-follower density.

Flickr-E avg avg
s0 σ0 # cores |F| |L| |F ∩ L| δFF δLL

4 90 1 267 518 22 938 2 012 1 727 0.49 0.8
4 120 65 868 10 806 653 551 0.41 0.8
4 150 5 777 4 974 198 174 0.37 0.82
5 80 3 963 545 13 079 1 407 1 176 0.60 0.89
5 90 928 484 9 631 876 731 0.54 0.87
5 100 264 548 7 303 585 485 0.51 0.87
6 80 3 203 566 6 601 740 616 0.63 0.93
6 90 630 476 4 614 442 362 0.59 0.92
6 100 145 298 3 106 241 222 0.56 0.92
6 120 7 002 1 618 92 81 0.52 0.94

Flickr-S avg avg
s0 σ0 # cores |F| |L| |F ∩ L| δFF δLL

4 90 836 479 7 443 930 668 0.46 0.48
4 120 29 492 4 431 351 243 0.43 0.60
5 90 247 021 3 474 426 288 0.52 0.69
5 100 69 545 2 506 269 170 0.50 0.76
6 80 456 110 2 118 311 192 0.57 0.80
6 120 1 583 512 35 33 0.48 0.9

Jaiku avg avg
s0 σ0 # cores |F| |L| |F ∩ L| δFF δLL

5 50 230 135 31 12 0.49 0.93
5 30 11 218 163 80 52 0.59 0.87
4 50 250 137 32 12 0.50 0.93
4 30 13 667 848 164 115 0.59 0.86
3 50 310 993 81 37 0.44 0.86
3 30 15 132 2 260 310 227 0.57 0.84

Y!360 avg avg
s0 σ0 # cores |F| |L| |F ∩ L| δFF δLL

4 50 8 109 8 4 0.29 0.62
4 40 66 262 25 11 0.33 0.7
5 40 1 43 5 0 0.31 0.5

nodes in L over the number of all possible edges in L:

δLL(C) =
|{(u, v) ∈ E | u ∈ L ∧ v ∈ L}|

|L|(|L| − 1)
.

Similarly we define the follower-follower density δFF(C) to
be the internal density of the follower set F .

3. EMPIRICAL FINDINGS

We analyze four datasets, two endorsement networks and
two social (i.e., not endorsement) networks. The Flickr
endorsement network (Flickr-E) is a subset of the entire
Flickr social network: we have a directed edge between two
users u and v if user u has marked at least one photo of

user v as favorite or if s/he has made at least one comment

in a photo of v. Our second endorsement network is Jaiku
(Jaiku), a micro-blogging social network. Here we have a di-
rected edge from user u to user v whenever user u is following
user v. The Flickr social network (Flickr-S), use the same
sample of users as in the case of Flickr-E, but in this case a
directed edge from users u to user v indicates that user u has
marked user v to be their “friend” or “family”. The second
social network we use is Yahoo! 360 (Y!360), an undirected
network that indicates friendship relationship among users.
This is the unique undirected network we use, but we can
make it directed by considering for each edge the two links
in both directions. The basic characteristics and statistics
of our datasets are reported in Table 1. Notice that the
Jaiku network is significantly smaller than the other three,
on the other hand, the Y!360 network is the sparsest of all.
Note that although the networks Flickr-E and Flickr-S

are defined over the same base of users, they have different
number of nodes due to the removal of singleton nodes.

We next report the empirical evidence of our findings,
namely that large cores can be found in endorsement net-
works and that these cores have a very dense leadership
nucleus. Indeed, our results (reported in Table 2) clearly
show that δLL is usually very large for endorsement net-
works, while it is always smaller for friendship-based social
networks. In both endorsement and social networks, the
average density of links among the followers (i.e., δFF) is al-
ways much lower than the nucleus density (i.e., δLL). This
clearly shows the presence of a strong directionality of the
links: mainly from the followers to the leaders. Recall that
δFL(C) = 1 by definition, or in other terms, in a core all
followers point to all leaders. It is worth mentioning that we
can not use the same settings of the parameters s0 and σ0

in all the networks, as they have different sizes and differ-
ent densities: what is a reasonable settings for one network
could result in too few cores in another network.

Using the method of swap randomization we confirm that
the structure of the cores that we report in this paper is
statistical significant.

Finally, as it is usually the case when mining any form
of frequent patterns, our method produces many similar,
overlapping, redundant cores, which presumably are differ-
ent footprints of the same community. This indicates the
need to devise clustering technique in order to coalesce sim-
ilar cores into meaningful communities, having a very large
followers base, while still maintaining a very high density in
their leadership nucleus.
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