
Distance oracles in edge-labeled graphs

Francesco Bonchi∗ Aristides Gionis† Francesco Gullo∗ Antti Ukkonen†

∗Yahoo Labs †Helsinki Institute for Information Technology HIIT
Barcelona, Spain Aalto University

{bonchi,gullo}@yahoo-inc.com {aristides.gionis,antti.ukkonen}@aalto.fi

ABSTRACT
A fundamental operation over edge-labeled graphs is the compu-
tation of shortest-path distances subject to a constraint on the set
of permissible edge labels. Applying exact algorithms for such an
operation is not a viable option, especially for massive graphs, or
in scenarios where the distance computation is used as a primitive
for more complex computations.

In this paper we study the problem of efficient approximation of
shortest-path queries with edge-label constraints, for which we de-
vise two indexes based on the idea of landmarks: distances from
all vertices of the graph to a selected subset of landmark vertices
are pre-computed and then used at query time to efficiently ap-
proximate distance queries. The major challenge to face is that,
in principle, an exponential number of constraint label sets needs
to be stored for each vertex-landmark pair, which makes the index
pre-computation and storage far from trivial. We tackle this chal-
lenge from two different perspectives, which lead to indexes with
different characteristics: one index is faster and more accurate, but
it requires more space than the other.

We extensively evaluate our techniques on real and synthetic
datasets, showing that our indexes can efficiently and accurately
estimate label-constrained distance queries.

1. INTRODUCTION
Computing shortest-path distances between any two vertices of

a graph is one of the most fundamental graph primitives, used in a
large variety of applications and methods. For today’s graph sizes
it is often not feasible to compute exact shortest-path distances by
relying on some of the well-known basic methods: running the Di-
jkstra’s algorithm, or some of its efficient variants [12], on graphs
of billions of vertices may require unaffordable time for a number
of real-world applications. This remains true even for moderately-
sized graphs if shortest-path queries are used as primitive in the
contexts of more complex real-time applications (e.g., in recom-
mender systems). For these reasons, designing fast shortest-path-
computation algorithms has become an active research area.

Numerous algorithms have been so far defined for speeding-up
shortest-path-distance computation—see [25] for an up-to-date sur-

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

S T

3

1

2 4 3

2

1

1

2

r r

r r

g

g o

o o

X
o g

r

p

s t
r r

Figure 1: Example edge-labeled graph where the label-constrained
shortest-path distance query 〈s, t, {r}〉 returns 4, while the query
〈s, t, {r, g}〉 returns 3, and the query 〈s, t, {r, g, o}〉 returns 2.

vey. Such algorithms can be broadly classified into exact and ap-
proximate. Although desirable in some scenarios, exact methods
usually rely on specific characteristics of the input graph, which
may limit the applicability in more general contexts. Instead, ap-
proximate methods typically allow for a fine tuning between ac-
curacy and efficiency that makes them able to satisfy the various
requirements/constraints of every specific application context.

Many methods for approximating shortest-path distances are
based on the idea of landmarks [27, 24, 13, 18, 22, 21, 28]. For
a standard graph G = (V,E), the landmark approach works by
selecting a subset of vertices X ⊆ V , |X| = k, and computing the
(exact) distances d(u, x) between every pair of vertices u ∈ V and
x ∈ X . At query time, given any two vertices s, t ∈ V , the triangle
inequality ensures that

max
x∈X
|d(x, s)− d(x, t)| ≤ d(s, t) ≤ min

x∈X
(d(x, s) + d(x, t)) .

Thus, the shortest-path distance between s and t can be estimated
by either the upper bound or the lower bound above, or by some
in-between value such as the median [21]. Denoting by n and
m the number of vertices and edges in the graph, respectively,
the landmark-based index takes O(km) offline time, as it requires
one scan of the graph per landmark, while the storage require-
ment is O(kn). At query time, an approximate shortest-path dis-
tance d(s, t) is found in O(k) time by accessing the precomputed
landmark-to-vertex distances for s and t.

Shortest paths on edge-labeled graphs. In a variety of appli-
cation domains it is increasingly common to come across graphs
whose edges are associated with a label denoting the type of the
relationship of the two incident vertices [16, 23, 26, 29, 8, 5]. For
instance, users of a social network have the possibility of categoriz-
ing their own connections in different social circles (e.g., “circles”
in Google+, or “lists” in Facebook or Twitter) [20], which makes
the edges of the social network characterizing different relation-
ship types, such as friends, relatives, colleagues, and so on. RDF
resources such as the Google Knowledge Graph or YAGO are natu-
rally represented as graphs whose links are labeled with the type of
the property (predicate) that characterizes the relationship between
the two connected entities. In a co-authorship network like DBLP

collaborations (links) between any two authors are characterized
by the topic(s) of the papers co-authored by those authors [6]. In
a protein-interaction network edge labels represent different types
of interactions between proteins, e.g., physical association, direct
interaction, co-localization, and so on [31]. Other examples are
multi-dimensional networks (i.e., networks derived from the inte-
gration of multiple networks) [26, 5], metabolic networks [9], rec-
ommendation networks [19].

When dealing with edge-labeled graphs, it is often required
to consider label-constrained shortest-path distance queries, i.e.,
shortest-path distance queries with a constraint on the set of per-
mitted edge labels. More precisely, given two vertices s and t and
a set of labels C, the query 〈s, t, C〉 asks to compute the length of
a shortest path from s to t, using only edges whose label belongs
to C—see Figure 1 for an illustration.

Applications. Label-constrained shortest-path distance queries
find natural application in a variety of real-world scenarios. Par-
ticularly, being usually a primitive involved in more complex tasks,
answering/approximating such queries efficiently is mandatory. As
a concrete example, consider some of the today’s novel systems for
advanced information retrieval and knowledge exploration, such as
the Google Knowledge Graph, Facebook Graph Search, or sim-
ilar RDF resources. As said above, the data format underlying
these resources can naturally be represented as a set of entities
linked by different types (edge labels) of association. When search-
ing these knowledge resources, one has to answer queries of the
form: “How related are entities A and B, contextualized to addi-
tional user information C?”. Here, C represents the context via
which one is interested to associate A and B: it corresponds to
the (semantically-annotated) query being issued and/or the inter-
est profile of the current user, and it can naturally be modeled as a
set of edge labels. In a real application, the relatedness of A and
B is assessed by complex machine-learned ranking functions that
exploit various features. Shortest-path distance is a central feature
typically considered (it is, e.g., highly-correlated to the prediction
of the link between two entities [14]), and, given the presence of
context C, the shortest-path distance needs to be label-constrained.
Such knowledge-exploration systems need to provide final answers
in real-time, thus requiring that all the components of the ranking
function, including label-constrained shortest-path distances, must
be computed/approximated very quickly.

A similar scenario arises in social networks, where the shortest-
path distance is one of the most effective features used for machine-
learning-based link-prediction systems [14, 10]. When edge la-
bels are available, the link-prediction systems can be empowered
by adding the functionality of predicting the type of the link, and
not only whether the link exists or not [1]. To still exploit shortest-
path distances as features in the machine-learning core task, both
the (offline) model-learning phase and the online prediction phase
need to rely on a set of examples of shortest-path distances con-
strained to the use of permissible labels, for different instances of
such constraint label sets. This means that a central task in this con-
text corresponds to answering several label-constrained shortest-
path distance queries at a time.

Network alignment, that is the identification of a matching
among different (sub-)networks, is a fundamental operation in
protein-interaction networks [30]. A specific type of network-
alignment query implemented in most existing commercial systems
such as PathBLAST (www.pathblast.org) [17] is: given an
input pathway (i.e., a sequence of proteins), find all the pathways
of a given target network that match the query pathway. As an-
swering exactly these queries requires solving a number of sub-
graph isomorphisms, existing systems rely on approximated meth-

ods. Such methods can be significantly speeded-up by taking into
account the labels naturally present on the edges of any protein-
interaction network and exploiting label-constrained shortest-path
distance queries. As an example, once having discovered one path-
way P that matches the query, the idea is to take the set of labels C
lying on the edges of P . Then, when asking if a pathway starting
from another protein in a different zone of the network can match
the query, one can first run a (approximated) label-constrained
shortest-path query specifying C as a constraint label set and use
the answer to this query as a pruning rule: if the distance returned is
sufficiently larger than the length of P , one can safely conclude that
no matching paths can exist starting from the protein being consid-
ered. An analogous reasoning clearly holds if simple shortest-path
queries are involved, but using label-constrained shortest-path dis-
tance queries makes the query more restrictive, thus resulting in
more effective pruning.

Challenges. Like non-labeled graphs, answering shortest-path dis-
tance queries in edge-labeled graphs efficiently is a very crucial
task. Unfortunately, the edge-label constraint creates a non-trivial
obstacle to the adaptation of any existing technique for simple
shortest-path distance estimation. In fact, there is no way for exist-
ing indexes to deal with the exponential number of possible query
constraint label sets.

For instance, a natural yet naïve way of extending the landmark
approach to an edge-labeled graph G with a label set L is to create
a different instance of G for each one of the 2|L| possible label
combinations, and index each graph instance separately. Then, any
query including a given constraint label set C is answered from the
index of the graph instance corresponding toC.1 The problem with
this naïve approach is of course that the number of graph indexes
increases exponentially with the size of the label set L. Even a
moderate set of ten labels increases the index size by three orders
of magnitude and makes the approach prohibitively expensive.

Outline. In this paper we study the problem of efficiently approx-
imating point-to-point shortest-path distance queries with edge-
label constraints. To the best of our knowledge, this problem
has never been considered so far. Indeed, most research on edge-
labeled graphs has focused on the subset-constrained reachability
problem [16, 29, 8], which is only a special case of the problem we
tackle in this paper: those works are only able to say if any two ver-
tices are connected by a path containing only the permissible labels,
while we are interested in assessing the distance between the two
vertices. To our knowledge, the only work dealing with shortest
path in edge-labeled graphs, in particular in road networks, is the
one by Rice and Tsotras [23], which is an adaptation of the contrac-
tion hierarchies [11] method to the context of edge-labeled graphs.
However, that work differs from ours in two main aspects. First, it
is suited for graphs that have the characteristics of road networks:
as empirically shown in our experiments, it seems less appropriate
for handling other more general graphs (e.g., graphs with a power-
law degree distribution, such as social networks). Second, more
importantly, Rice and Tsotras focus on exact solutions, while, for
all the motivations discussed above, we devise here approximate
techniques.

Our goal is to devise indexing strategies to efficiently approx-
imate point-to-point shortest-path distance queries on real-world
edge-labeled graphs. On such graphs, the number of labels is typ-
ically moderate, i.e., in the order of few tens;2 nevertheless, as al-

1An equivalent approach is to index a single graph and store, for each landmark-vertex
pair, a distance for each one of the possible 2|L| label combinations.
2Even on edge-labeled graphs modeling RDF resources, where the number of low-
level labels can in principle be much higher, what really matters are the few upper-

ready pointed out above, devising proper solutions even for this
number of labels is very challenging, due to the intrinsic exponen-
tial blowup that needs to be overcome.

We propose two indexes that adapt the idea of landmarks to edge-
labeled graphs in two different ways. The first approach, dubbed
Powerset Cover or PowCov for short, is motivated by the obser-
vation that certain constraint label sets can be subsumed by oth-
ers. Therefore, it is possible to build the index for a number of
minimal, non-redundant label sets that is substantially smaller than
2|L|. Even though this approach does not provide an asymptotic
improvement over the naïve method, it still gives tremendous sav-
ings in practice and makes it possible to index shortest-path dis-
tances in many real-world networks.

The PowCov index is a valuable solution for most real-world
edge-labeled graphs when the number of labels remains within a
range of few tens. However, building PowCov indexes becomes
unaffordable as the number of edge labels increases beyond this.
Thus, we introduce a second approach that keeps a simpler and
lighter index. This approach is based on assigning landmarks to a
single label, so that they can be used in approximating queries in
which their label is part of the constraint label set. We dub this ap-
proach Chromatic Landmarks, or ChromLand for short, as each
landmark has assigned one “color” (label). While PowCov builds
a larger index, ChromLand deals with the inherent complexity of
the problem during query processing.

Overall, our indexes offer a tradeoff of indexing time/space vs.
accuracy/efficiency: the first index is faster and more accurate, but
it has larger space and preprocessing requirements. Also, a key
advantage of both our indexes is that the accuracy vs. efficiency
trade-off can be fine-tuned by selecting an appropriate number of
landmarks: the fewer the landmarks, the faster the query evaluation,
and the lower the accuracy.

Contributions. In summary, our contributions are as follows:

• We design two landmark-based index structures for
efficiently approximating label-constrained point-to-point
shortest-path queries in edge-labeled graphs.

• We propose efficient algorithms for building our indexes.
Particularly, for PowCov, we present an efficient way to tra-
verse the label powerset by pruning unpromising label sets.

• We devise novel strategies for finding a good set of land-
marks for both the proposed indexes.

• We evaluate our indexes on both real-world and synthetic
edge-labeled graphs. Our indexes outperform by a large mar-
gin both the exact method and the naïve indexing scheme:
they achieve a speed-up factor up to three orders of magni-
tude compared to exact shortest-path distance computation,
while exhibiting small error.

Roadmap. The rest of the paper is organized as follows. In Sec-
tion 2 we formally state our problem. The two proposed indexes
are described in Section 3 and 4, respectively. Section 5 presents
experiments, while Section 6 concludes the paper.

2. PROBLEM DEFINITION
The input to our problem is an edge-labeled graph G =

(V,E, L, `), where V is a set of n vertices, E ⊆ V × V is a
set of m edges, L is a set of labels, and ` : E → L is a labeling

level labels of the hierarchies that are typically exploited to semantically organize the
whole set of low-level labels.

Figure 2: The landmark x and the vertex u are connected by three
paths. We can observe that the label sets {o} and {r, g} are SP-minimal
with respect to x and u, while {r, o} is not. We thus do not need to
compute/store the {r, o}-constrained shortest-path distance, as it can
implicitly be derived from the label set {o} that subsumes {r, o}.

function that assigns a label in L to each edge in E . For the sake
of presentation, we focus on undirected unweighted graphs, even
though all our concepts and ideas can easily be extended to handle
directed and weighted graphs as well. We also find it intuitive to
think of the edge label as the “color” of the edge, so we use the
terms label and color interchangeably in the rest of the paper.

Given a set of colors C ⊆ L and two vertices u, v ∈ V , we
define the C-constrained path pC(u, v) to be a path between u and
v containing only edges e such that `(e) ∈ C. The C-constrained
shortest-path distance dC(u, v) is the length of a shortest path over
all C-constrained paths between u and v. If no such paths exist, we
define dC(u, v) =∞.

In this paper we study label-constrained point-to-point shortest-
path distance queries (LC-PPSPD), i.e., triples 〈s, t, C〉, where
s, t ∈ V and C ⊆ L, which ask to find the C-constrained shortest-
path distance dC(s, t). Note that the LC-PPSPD problem can be
solved exactly in polynomial time by simply removing from G all
edges whose color is not in C and computing the shortest-path dis-
tance on the resulting graph. Our goal is to devise indexing tech-
niques to perform fast and accurate online approximations.

Note that all our methods are general enough to easily apply to
graphs having multiple labels on the edges. The only modification
needed concerns the definition of C-constrained path, which, in
the multiple-label case, is defined as a path with only edges e such
that all (or at least one of) the labels of e belong to C. Then, our
methods need only trivial adaptations in order to take into account
this generalized definition of C-constrained path.

3. POWERSET COVER INDEX
The index we propose here is based on the simple observation

that, in real-world graphs, it is likely that different constraint label
sets yield the same distances between graph vertices, as shown in
the example of Figure 2. Rather than computing and storing dis-
tances for all possible label combinations, we thus only consider
those ones that are really required.

3.1 Index overview and query processing
We first introduce the notions of subsumption and SP-minima-

lity. We define these notions for landmark-vertex pairs (x, u), even
though they hold for any two vertices u, v ∈ V .

DEFINITION 1. Given a landmark x ∈ X , a vertex u ∈ V , and
two label sets S, T ⊆ L, we say that S subsumes T with respect to
x and u if and only if S ⊆ T and dS(x, u) = dT (x, u).

DEFINITION 2. A label set S ⊆ L is said shortest path-
minimal (SP-minimal) with respect to a landmark x ∈ X and ver-
tex u ∈ V if and only if it is not subsumed by any other label set
with respect to x and u.

The above definitions imply that any non-SP-minimal label set
C can be interpreted as “redundant,” as the corresponding C-

constrained shortest-path distance dC(x, u) can be derived by us-
ing a subset of C. The idea is better illustrated in the example of
Figure 2.

This means that storing all SP-minimal label sets for a vertex-
landmark pair (x, u) is sufficient for retrieving the exact distance
between x and u, for each subset C ⊆ L. The next theorem
shows that the SP-minimal label sets are sufficient to retrieve C-
constrained shortest-path distances for any landmark-vertex pair
(x, u) and any label-set constraint C, as such a distance simply
corresponds to the minimum distance taken over all SP-minimal
label sets that are subsets of C.

THEOREM 1. Given a landmark-vertex pair (x, u), let SPxu

be the set of 〈S, dS〉 pairs containing all SP-minimal label sets
S with respect to x and u along with the corresponding S-
constrained shortest-path distance dS . Then, for any label set
C ⊆ L, theC-constrained distance dC(x, u) can be retrieved from
SPxu as

dC(x, u) =

{
∞, if there is no 〈S, dS〉 ∈ SPxu s.t. S ⊆ C
min{dS | 〈S, dS〉 ∈ SPxu, S ⊆ C}, otherwise.

PROOF. By definition of subsumption and SP-minimality, the
label sets in SPxu that account for retrieving the exact distance
dC(x, u) for any label set C are the subsets of C. Hence, if no sub-
set of C is included in SPxu, we can immediately conclude that
there are no paths between u and x containing only labels in C,
and, therefore, dC(x, u) = ∞. On the other hand, if SPxu con-
tains at least one subset ofC, the distance dC(x, u) can be retrieved
based on the straightforward observation that the S-constrained dis-
tance dS between x and u computed for any subset S ⊆ C repre-
sents an upper bound to the distance dC(x, u). Hence, it holds
that dC(x, u) ≤ dS , ∀〈S, ds〉 ∈ SPxu, S ⊆ C, which clearly
implies that dC(x, u) ≤ min{dS | 〈S, dS〉 ∈ SPxu, S ⊆ C}.
However, we recall that SPxu contains all SP-minimal label sets
with respect to x and u. Thus, by definition of SP-minimality, the
above inequality must be an equality for some SP-minimal set that
subsumes C; this means that dC(x, u) = min{dS | 〈S, dS〉 ∈
SPxu, S ⊆ C}.

Overall, the structure of the PowCov index consists of all sets
SPxu, for each landmark-vertex pair (x, u). We partition the label
sets S within each SPxu according to their associated distances dS
and we organize any group of label sets sharing the same distance
into a small-redundancy data structure, e.g., a prefix tree.

Query processing. Given a query 〈s, t, C〉, the C-constrained
shortest-path distance between s and t is approximated similarly as
in the landmark approach for non-labeled graphs. Indeed, we sim-
ply need to retrieve from the index the distances dC(x, s), dC(x, t),
for all x ∈ X , and approximate dC(s, t) resorting to the trian-
gle inequality, as described in Section 1. We compute the dis-
tances dC(x, s) (and dC(x, t)) by visiting the groups of label sets
in SPxs, starting from the group that has minimum distance (The-
orem 1). We stop when a group contains a set S that is subset of C,
and we return the corresponding distance dC . If no subset of C is
encountered during the visit, we return∞.

Complexity. The space complexity of the PowCov index and the
query-processing time depend on the size of the various sets SPxu.
In particular, ifH is the maximum size over all sets SPxu, the total
space of the index is O(kHn), while the query-processing time is
O(kH|L|). In the worst case, H could be O(2|L|). Nevertheless,
we remark that H is actually bounded by a function of the maxi-
mum finite distance dmax in the graph, as shown in Proposition 1.

Algorithm 1 TraversePowerset-BruteForce
Input: an edge-labeled graph G=(V,E, L, `), a set of landmarks X
Output: for each pair (x, u), where x ∈ X and u ∈ V , a set SPxu of
〈C, d〉 pairs storing all SP-minimal label sets C with respect to x and
u along with the corresponding C-constrained shortest path distance d

1: SPxu ← ∅, ∀x ∈ X,u ∈ V
2: for all x ∈ X do
3: D← ∅
4: for all C ⊆ L do
5: D[C]← ConstrainedSSSP(G, x,C)
6: end for
7: for all C ⊆ L, u ∈ V s.t. D[C, u] <∞ do
8: if C is SP-minimal w.r.t. x and u then
9: SPxu ← SPxu ∪ {〈C,D[C, u]〉}

10: end if
11: end for
12: end for

PROPOSITION 1. It holds that H ≤
∑dmax

d=1

(|L|
d

)
, where

dmax = maxu,v∈V,C⊆L {dC(u, v) | dC(u, v) <∞}.
PROOF. The claim follows directly from the fact that any SP-

minimal label set C cannot have size larger than dmax. Indeed,
given an SP-minimal label set C with respect to x and u, all labels
within C must belong to each C-constrained shortest path between
x and u, otherwise, filtering the labels that do not appear in some of
these shortest paths out from C would lead to a subset S that sub-
sumesC, thus makingC non-SP-minimal. This implies that |C| ≤
dC(x, u) ≤ dmax, ∀C ∈ SPxu, ∀SPxu. The maximum sizeH of
any SPxu is therefore not larger than all possible ways of choos-
ing from the input label set L a set of d ≤ dmax distinct labels, i.e.,
H = max{|SPxu| | x ∈ X,u ∈ V \ {x}} ≤

∑dmax
d=1

(|L|
d

)
.

Due to the small-world phenomenon, the distance dmax remains
in practice very small. Indeed, as we experimentally show in Sec-
tion 5, the average number of distances to be stored per landmark-
vertex pair is at most quadratic, in most cases even linear, in the
number of labels in the input graph.

3.2 Building the index
We now describe how to build a PowCov index. We start with

an overview of a basic brute-force approach. Then, we discuss a
number of pruning rules to improve its efficiency.

3.2.1 A brute-force algorithm
A brute-force algorithm to build a PowCov index is outlined

as Algorithm 1. For each landmark x, it performs the following
two main steps. First, a C-constrained single-source shortest path
(SSSP) with source x is computed for each label set C ⊆ L (i.e.,
an SSSP where edges with label not in C are ignored); the result
of these SSSPs, i.e., the C-constrained distances dC(x, u) for all
vertices u ∈ V , is stored into the vector D (Lines 4-6). Note that
D[C, u] = dC(x, u). Then (Lines 7-11), for each label set C ⊆ L
and each vertex u ∈ V , the SP-minimality of C with respect to x
and u is checked; ifC is recognized as SP-minimal, then it is added
(along with the corresponding distance D[C, u]) to the output set
SPxu.

The first phase of computing the SSSPs for all landmarks and all
label sets takes O(2|L|mk), while checking SP-minimality for all
landmarks, all labelsets, and all vertices takes O(2|L|nk|L|). The
latter is a result based on the following theorem:

THEOREM 2. Given a landmark x ∈ X and a vertex u ∈ V ,
any label set C ⊆ L is SP-minimal with respect to x and u if and
only if dC(x, u) < dC′(x, u), for all C′ ⊂ C such that |C′| =
|C| − 1.

PROOF. The necessary condition (i.e., C is SP-minimal only if
dC(x, u) < dC′(x, u), for all C′ ⊂ C such that |C′| = |C| − 1)
easily follows from the definition of SP-minimality: C cannot be
SP-minimal with respect to x and u if there exist a subset C′ of C
such that dC′(x, u) = dC(x, u).

The sufficient condition (i.e., C is SP-minimal if dC(x, u) <
dC′(x, u), for all C′ ⊂ C s.t. |C′| = |C| − 1) holds based on the
following observation. If the distance dC(x, u) < dC′(x, u), for
all subsets C′ of C of size |C′| = |C| − 1, then this must hold for
any subset of C as well, regardless of the size. This implies that C
is SP-minimal.

That is, the SP-minimality of a label set C is checked in
O(|C|) = O(|L|) time by considering only the set of (previously
computed) distances {D[C′, u] | C′ ⊂ C, |C′| = |C| − 1}.
We will exploit this result also later. In conclusion, the overall
running time of the TraversePowerset-BruteForce algorithm is
O(2|L|k(m+ n|L|)).

3.2.2 Pruning the search space
We now define a number of pruning rules to improve the effi-

ciency of the TraversePowerset-BruteForce algorithm. We fo-
cus our discussion on a single landmark x. Our pruning rules are
classified into three categories:
• Skipping unnecessary label sets, i.e., recognize early the label

sets C for which there exists no vertex u such that C is SP-
minimal with respect to x and u.
• Skipping unnecessary SP-minimality tests, i.e., once a C-

constrained SSSP with source x has been computed, identify
a set of vertices for which C cannot be SP-minimal and skip
the corresponding SP-minimality test.
• Speeding-up SP-minimality tests, i.e., for some vertices u, rec-

ognize if a label set C is SP-minimal or not with respect to x
and u more efficiently than O(|C|) time.

We discuss next the three categories in more detail.

Skipping unnecessary label sets. For any given landmark x, the
labelsets that can safely be discarded are those label sets C for
which the set of vertices reachable from x is empty, i.e., those label
sets C such that dC(x, u) = ∞, for all u ∈ V . Early detection of
such label sets can be carried out based on the observation that a
label set C yields an empty set of vertices reachable from x if and
only if C contains no labels present on the edges incident to x. In
that case (and only in that case), there is no way for the landmark
x to remain connected to the rest of the graph. This observation is
formalized next.

OBSERVATION 1. Given an edge-labeled graph G =
(V,E, L, `) and a landmark x ∈ X , let Lx be the set of all labels
placed on edges incident to x, i.e., Lx = {`(x, u) | (x, u) ∈ E}.
For any label set C ⊆ L it holds that: dC(x, u) = ∞ for all
u ∈ V if and only if C ⊆ L \ Lx.

To exploit Observation 1, we modify the algorithm Traverse-
Powerset-BruteForce as follows. Instead of visiting all C ⊆ L
(Lines 4-6 in Algorithm 1), we avoid generating unnecessary label
sets by employing a strategy that resembles candidate generation of
the well-known Apriori algorithm for frequent-itemset mining [2].

While Apriori is a level-wise bottom-up strategy, in our setting,
we need to generate candidates (i.e., label sets) in a top-down fash-
ion. However, with a simple trick, we can still rely on a bottom-up
strategy and keep all its efficiency advantages. The idea is to gen-
erate candidates in a standard bottom-up fashion, while testing the

Function 1 GenerateCandidates(G, x)

Input: an edge-labeled graph G = (V,E, L, `), a landmark x
Output: a set of label sets C
1: C ← ∅
2: Lx ← {`(x, u) | (x, u) ∈ E}
3: Cand← {{l} | l ∈ L}
4: while Cand 6= ∅ do
5: Cand← Cand \{C | C ∈ Cand, C ⊇ Lx}
6: C ← C ∪ {(L \ C) | C ∈ Cand}
7: Cand← AprioriNextLevel(Cand)
8: end while
9: return C

pruning condition in Observation 1 on the complement of each can-
didate C. More precisely, given a candidate C, we decide whether
it should be filtered out by checking if L \ C is a subset of L \ Lx

(where Lx = {`(x, u) | (x, u) ∈ E}), or, equivalently, whether
C ⊇ Lx. The details of the procedure just described are reported
as Function 1.
Skipping unnecessary SP-minimality tests. Once a C-
constrained SSSP with source x has been computed for any label
set C, the SP-minimality of C should in principle be checked with
respect to all vertices u having distance dC(x, u) < ∞ (Lines 7-
11 in Algorithm 1). Here we show how to early recognize vertices
u for which C cannot be SP-minimal, thus avoiding to take into
consideration such vertices at all. Particularly, we observe the fol-
lowing: for any label set C to be SP-minimal with respect to a
vertex u (and a landmark x) each label in C must be present on
at least one edge of every C-constrained shortest path between x
and u; otherwise, C cannot be SP-minimal with respect to u be-
cause there would exist a shortest path between x and u that uses
only a subset of C. An immediate consequence of this is that C
cannot be SP-minimal with respect to any vertex u having distance
dC(x, u) < |C|. We formalize this observation next.

OBSERVATION 2. Given a landmark x ∈ X and a vertex u ∈
V , any label set C ⊆ L is SP-minimal with respect to x and u only
if dC(x, u) ≥ |C|.

To profitably exploit the above observation, the output of any
C-constrained SSSP with source x can be organized into an appro-
priate data structure where, given a distance t, all objects u having
dC(x, u) = t can be accessed in constant time. This way, we can
process only vertices at a distance t ≥ |C| and skip all other ones.
Speeding-up SP-minimality tests. Finally, we discuss two obser-
vations that allow the SP-minimality of certain label sets C and
vertices u be checked in O(1) time rather than O(|C|).

The first observation is the following. Consider a vertex u and
all unconstrained shortest paths connecting u to the landmark x.
Assume that at least one of those shortest paths is monochromatic.
Denote by lu the unique label of that path. Then, it is easy to see
that any label set C containing lu cannot be SP-minimal with re-
spect to x and u. We formalize this observation next.

OBSERVATION 3. Given a landmark x ∈ X , let u be a vertex
in V such that there exists an unconstrained shortest path between
x and u that is monochromatic and let lu denote the unique label
on the edges of such a monochromatic path. It holds that all label
sets C ⊃ {lu} are non-SP-minimal with respect to x and u.

To exploit Observation 3 in practice, we compute and store the
set Vx of all vertices u that have a monochromatic shortest path
connecting them to x, along with the unique label lu of the cor-
responding path for every u. This can be achieved in O(m + n)

Algorithm 2 TraversePowerset
Input: an edge-labeled graph G=(V,E, L, `), a set of landmarks X
Output: for each pair (x, u), where x ∈ X and u ∈ V , a set SPxu of
〈C, d〉 pairs storing all SP-minimal label sets C with respect to x and
u along with the corresponding C-constrained shortest path distance d

1: SPxu ← ∅, ∀x ∈ X,u ∈ V
2: for all x ∈ X do
3: D← ∅, V← ∅
4: C ← GenerateCandidates(G, x) {Observ. 1}
5: for all C ∈ C do
6: 〈D[C],V[C]〉 ← ConstrainedSSSP(G, x,C)
7: end for
8: L← SingleLabelSP(G, x,D[L],V[L]) {Observ. 3}
9: for all C ∈ C do

10: for all t ≥ |C| {Observ. 2} do
11: V̂t ← nonSPminimal(C,V[C, t− 1],V[C, t])

{Observ. 4}
12: for all u ∈ V̂t, {L[u]} 6⊂ C {Observ. 3} do
13: if C is SP-minimal w.r.t. x and u then
14: V̂t ← V̂t \ {u}
15: end if
16: end for
17: SPxu ← SPxu ∪ {〈C,D[C, u]〉}, ∀u ∈ V[C, t] \ V̂t

18: end for
19: end for
20: end for

time by computing an unconstrained SSSP with source x and then
visiting the output of such a SSSP level-by-level, i.e., starting from
vertices at distance 1 from x and proceeding by increasing the dis-
tance one-by-one. This information can profitably be exploited ev-
ery time an SP-minimality check is required for any label set C
and vertex u ∈ Vx: C can be recognized as non-SP-minimal with
respect to x and u in constant time by simply checking whether the
label lu belongs to C.

Let us now discuss our second observation. We recall that, to ex-
ploit Observation 2, the output of any C-constrained SSSP is orga-
nized as a collection of vertex sets accessible in constant time based
on the distance from the landmark x. Let Vt denote the vertex set at
distance t from x. The SP-minimality ofC is checked distance-by-
distance, starting from the set V|C|. Then, for any vertex within Vt,
we can safely assume that the SP-minimality of all vertices in Vt−1

has already been checked. We can exploit this as follows. Given a
vertex u ∈ Vt, let Vt−1,u denote the set of all vertices in Vt−1 con-
nected to u by an edge whose label belongs to the constraint label
set C, i.e., Vt−1,u = {v ∈ Vt−1 | (u, v) ∈ E, `(u, v) ∈ C}. Our
observation is: a label set C is SP-minimal with respect to a vertex
u ∈ Vt and a landmark x if C has been recognized as SP-minimal
with respect to every vertex in Vt−1,u. Indeed, it is easy to see that,
if such a condition holds, then there cannot exist any shortest path
connecting u to x whose labels are a subset of C. Hence, C is
SP-minimal with respect to u as well.

OBSERVATION 4. Given a landmark x ∈ X and a label set
C ⊆ L, let Vt denote the set of all vertices u having distance
dC(x, u) = t and Vt−1,u = {v ∈ Vt−1 | (u, v) ∈ E, `(u, v) ∈
C}. For any vertex u ∈ Vt, if C is SP-minimal with respect to all
vertices v ∈ Vt−1,u (and x), then C is SP-minimal with respect to
u (and x).

According to the above observation, the SP-minimality check
of C can be limited only to vertices v ∈ Vt having at least one
non-SP-minimal neighbor in Vt−1. The data structures to find such
vertices are easily produced by the C-constrained SSSP algorithm.
For all other vertices in Vt we can conclude that C is SP-minimal
without further computations.

3.2.3 The TraversePowerset algorithm
The algorithm that exploits the pruning rules described in Sec-

tion 3.2.2 is dubbed as TraversePowerset (Algorithm 2).
First, Observation 1 (and Function 1) is exploited to avoid gen-

erating unnecessary label sets (Line 4), and, hence, compute label-
constrained SSSPs only for the necessary label sets (Lines 5-7).
Note that a C-constrained SSSP returns the distance of each ver-
tex u ∈ V from x (vector D[C]), as well as a vector of vertex sets
indexed by the distance from x (vector V[C]). We also assume
that all edges with label in C connecting vertices between two con-
secutive vertex sets V[C, t − 1], V[C, t] are available. To exploit
Observation 3, a vector L is computed by function SingleLabelSP
(Line 8): L contains, for all vertices u, the label of the monochro-
matic shortest path between u and x (if any).

In the main cycle of the algorithm (Lines 9-19), all label sets
within C are processed. Based on Observation 2, the vertices taken
into account for each C ∈ C are only those at distance ≥ |C| from
x (Line 10). Among such vertices, the subset of those ones for
which C cannot immediately be recognized as SP-minimal based
on Observation 4 is firstly identified (Line 11). Finally, only the
vertices in the latter subset for which Observation 3 does not ap-
ply (Line 12) enter a “standard” SP-minimality test, i.e., an SP-
minimality test performed based on Theorem 2 (Lines 13-15).

3.3 Selecting landmarks
Exact landmark selection. We now turn our attention to the prob-
lem of selecting good landmarks for the PowCov index. We first
formalize the POWCOV-LANDMARK-SELECTION problem that
asks to find a minimum-sized landmark set that allows the Pow-
Cov index to answer all queries exactly.

DEFINITION 3. Given a set of landmarks X and a query Q =
〈s, t, C〉, let d̃PC(Q,X) denote the approximate answer to Q pro-
vided by the PowCov index using the landmarks X . A set of land-
marks X is called PowCov-exact if and only if d̃PC(Q,X) =
dC(s, t), for all queries Q = 〈s, t, C〉.

PROBLEM 1 (POWCOV-LANDMARK-SELECTION). Given
an edge-labeled graph G = (V,E, L, `), find a minimum-sized set
of landmarks X ⊆ V such that X is PowCov-exact.

A first step for tackling Problem 1 is to determine the conditions
under which any landmark set X is PowCov-exact. This is stated
in the following lemma.

LEMMA 1. Given an edge-labeled graph G = (V,E, L, `), a
set of landmarks X ⊆ V is PowCov-exact if and only if, for all
pairs of vertices u, v and for all SP-minimal label sets C with re-
spect to u and v, there exists a landmark in X lying on at least one
C-constrained shortest path p∗C(u, v).

PROOF. Let us prove the first direction of the logical implica-
tion. First, by the notion of SP-minimality, the condition that there
exists a C-constrained shortest path that intersects X for all ver-
tices u, v and for all SP-minimal label sets C with respect to u and
v actually holds for all label sets, not only the SP-minimal ones.
This means that, for each query 〈s, t, C〉, there exists a landmark
lying on at least one C-constrained shortest path between s and t.
This is sufficient for the upper bound given by triangle inequality
to be exact, provided that the intermediate distances dC(s, x) and
dC(x, t) stored in the index considered are exact for each input
query. The latter condition is ensured by PowCov, therefore the
claim follows.

The other side of the implication states that if there exists a pair
u, v and an SP-minimal label set C (with respect to u and v) such

that all C-constrained shortest paths p∗C(u, v) do not pass through
any landmark in X , then X is not PowCov-exact. If this arises,
then a query 〈u, v, C〉 is answered by PowCov resorting to the
upper bound computed according to a path p∗S(u, v) that involves
some subset S ⊂ C. The SP-minimality of C guarantees that
dS(u, v) > dC(u, v), then the query 〈u, v, C〉 is not answered
exactly.

Based on Lemma 1, we can now derive a key result that relates
the POWCOV-LANDMARK-SELECTION problem with the vertex-
cover problem. Recall that a vertex cover of a graphG = (V,E) is
a subset of vertices V ′ ⊆ V such that for all edges (u, v) ∈ E it is
either u ∈ V ′ or v ∈ V ′. The relation is stated in the next theorem.

THEOREM 3. Given an edge-labeled graph G = (V,E, L, `),
a set of landmarks X ⊆ V is PowCov-exact if and only if X is a
vertex cover of G.

PROOF. We prove the theorem by showing that any landmark
set X satisfies Lemma 1 if and only if it is a vertex cover of G.
First, by definition of vertex cover, it is guaranteed that, for each
pair of vertices u, v inG and for each path p between u and v, there
exists at least one landmark x ∈ X belonging to p. This implies
that, for each query label set C, at least one landmark lies on a
C-constrained shortest path between u and v. Thus, X satisfies
Lemma 1.

On the other hand, note that if X is not a vertex cover of G, then
there exists an edge (u, v) in G such that u /∈ X and v /∈ X . This
means that the query 〈u, v, C〉, where C = {`(u, v)}, cannot be
answered exactly. Indeed, dC(u, v) is clearly equal to 1, but, as
neither u nor v belongs to the landmark set X , the bound provided
for this query is necessarily ≥ 2 because it is computed on a path
passing through at least one vertex other than u and v. It easy to
see that the label set C = {`(u, v)} is SP-minimal with respect to
u and v and the path composed by the single edge (u, v) is the only
C-constrained shortest path between u and v. Thus, we have found
a pair of vertices u, v and an SP-minimal label set with respect u
and v such that no C-constrained shortest path between u and v
contains a landmark in X . This makes X violating the condition
required by Lemma 1. The theorem follows.

An immediate corollary of Theorem 3 is that a minimum vertex
cover is a solution for Problem 1.

COROLLARY 1. A set of landmarks X is a solution for the
POWCOV-LANDMARK-SELECTION problem if and only if X is
a minimum vertex cover of the input graph.

Approximate landmark selection. Corollary 1 suggests to se-
lect landmarks by finding a minimum vertex cover of the graph G.
However, even though the size of the minimum vertex cover may
be efficiently approximated within a factor 2 [15], this size, in many
cases in practice, may be Ω(n) This is too large for our index, as
the basic assumption for any landmark-based index is is to have a
number of landmarks� n.

To overcome this drawback, we depart from the requirement of
finding a set of landmarks that allows answering all queries ex-
actly. Instead, we aim at maximizing the number of queries that
can be answered exactly with k landmarks. However, consider-
ing a problem formulation where the optimal k landmarks explic-
itly maximize the number of queries correctly answered may lead
to inefficient optimization strategies. The intuition behind this is
that, while in the non-labeled case assessing the number of queries
exactly answered by a single landmark needs one SSSP and time

O(m), the labeled case requires 2|L| SSSPs (one for each query
label set) and time O(m2|L|), which makes even simple heuristics
like local search not scalable. For this reason, and further motivated
by the above results about vertex covering, we formulate the prob-
lem as a k-MAX-VERTEX-COVER problem [7]: given an integer
k, find k vertices in the input graph so that the number of covered
edges is maximized. Note that such a formulation is still close to
the formulation that explicitly considers the number of queries ex-
actly answered, as the more the edges covered by a landmark set,
the more the queries answered correctly. At the same time, this
formulation has the advantage that can be (approximately) solved
efficiently, as shown next.

The k-MAX-VERTEX-COVER problem is NP-hard [7], but it
admits a simple and efficient approximation algorithm which we
call GreedyMVC. Given the input graph and a partial solution con-
taining < k landmarks (initially empty), the algorithm always se-
lects the vertex that covers the largest number of still uncovered
vertices. That is, the vertex that maximizes the marginal gain of
the cover is added to the set of landmarks in each iteration, un-
til k landmarks have been collected. Using standard arguments
for submodular-function maximization [15], the GreedyMVC al-
gorithm can be shown to achieve an approximation factor of(
1− 1

e

)
≈ 0.632. This means that the solution we obtain for k

landmarks covers at least 63% of the vertices covered by the op-
timal solution with k landmarks. By exploiting this and adapting
another result stated in [7], we obtain the following theorem:

THEOREM 4. The GreedyMVC algorithm used for selecting
landmarks for the PowCov index provides an approximation guar-
antee of max

{
1− 1

e
, k
n

}
.

PROOF. Given a graph G = (V,E), let V C = [u1, . . . , uk] ⊂
V be the output of GreedyMVC, ordered based on the specific it-
eration where vertices are added to V C. Let also δi denote the
number of edges covered by ui in the graph resulting after the ex-
ecutions of iterations 1 through i − 1, ∀i ∈ [1..k]. Finally, let
V C∗ denote the optimal solution, and E[V C] and E[V C∗] the
total number of edges covered by V C and V C∗, respectively.

First, we note that
∑k

i=1 δi = E[V C], while
∑n

i=1 δi =
|E| ≥ E[V C∗]. Also, as in each iteration GreedyMVC picks the
maximum degree vertex, where the degree is computed based on
the reduced graph resulting from all previous iterations, it holds
that δ1 ≥ δ2 ≥ · · · ≥ δk. This implies that

∑k
i=1 δi ≥

k
n

∑n
i=1 δi. Combining all these findings, it results that E[V C] =∑k

i=1 δi ≥
k
n

∑n
i=1 δi = k

n
E[V C∗]. Thus, GreedyMVC is a k

n
-

approximation algorithm for k-MAX-VERTEX-COVER.
Combining this result with the result derived from submdular-

function maximization we obtain an overall approximation factor
of max

{
1− 1

e
, k
n

}
.

4. CHROMATIC LANDMARKS INDEX
In the worst case, the construction time of the PowCov index re-

mains exponential in the number of labels. This is because funda-
mentally PowCov is based on the same strategy as the brute-force
approach, it only uses a number of efficient pruning heuristics.

In this section, we propose a second index, called Chromatic
Landmarks (ChromLand), which is kept as light as possible and
similar to the standard landmark approach for non-labeled graphs.
As a trade-off, ChromLand incurs in increased query time and of-
fers less accurate answers.

4.1 Structure of the index
The main idea of the ChromLand index is that each of the k

landmarks is assigned to a single label (color) in L. The land-

marks of this index are called chromatic landmarks. Any distance
involving one or more of such landmarks is referred to as chromatic
distance. In particular, the chromatic distance between a landmark
x ∈ X and a vertex u ∈ V is defined as the distance d{c(x)}(x, u)
computed using only edges having the color c(x) assigned to x,
while the chromatic distance between any two landmarks x, y ∈ X
corresponds to the distance d{c(x),c(y)}(x, y) using only edges
of the colors of both x and y. We denote by cd(·, ·) the chro-
matic distance, and thus, we have cd(x, u) = d{c(x)}(x, u)—
vertex-to-landmark; or cd(x, y) = d{c(x),c(y)}(x, y)—landmark-
to-landmark.

The structure of the ChromLand index is thus simple: for
each vertex u ∈ V \ X we store the (mono-)chromatic distances
to all landmarks, and for each landmark x ∈ X we store the
(bi-)chromatic distances to all other landmarks. Building and stor-
ing the index can be accomplished with k BFS traversals, requiring
O(km) time and O(kn) space.

4.2 Query processing
A simple way to process LC-PPSPD queries using the Chrom-

Land index, is to use the upper-bound based on the triangle in-
equality, as discussed in the Introduction.

PROPOSITION 2. Given a query 〈s, t, C〉 and a set of chro-
matic landmarks X , it holds that

dC(s, t) ≤ min{cd(x, s) + cd(x, t) | x ∈ X and c(x) ∈ C}.
PROOF. First, we observe that dC(s, t) ≤ dS(s, t), ∀S ⊆ C.

Combining this with triangle inequality leads to:

dC(s, t) ≤ dC(x, s) + dC(x, t), ∀x ∈ X
≤ d{c(x)}(x, s) + d{c(x)}(x, t), ∀x ∈ X s.t. c(x) ∈ C
= cd(x, s) + cd(x, t), ∀x ∈ X s.t. c(x) ∈ C,

which clearly implies that dC(s, t) ≤ min{(cd(x, u) + cd(x, t)) |
x ∈ X ∧ c(x) ∈ C}.

This query-processing strategy requiresO(k) time, like the land-
mark approach for standard PPSPD queries. Nevertheless, the above
approach may result in poor accuracy as distances in the precom-
puted index consider only monochromatic paths, and the shortest-
path distance for larger constraint label sets may not be accurately
approximated by a monochromatic path.

We handle the above issue by considering paths that pass through
more landmarks. We remark that, for PPSPD queries on non-labeled
graphs, using multiple landmarks does not yield any improvement,
because the length of a path using landmark x is upper bounded by
the length of a path using landmarks x and y. Instead, in the multi-
chromatic context, the estimation can be improved by using more
landmarks. Indeed, if two chromatic landmarks x and y are as-
signed to different colors, the following upper bound for dC(u, v)
could be tighter than the simpler one in Proposition 2 (see Figure 3
for an example):

dC(s, t) ≤min{cd(u, x) + cd(x, y) + cd(y, v) |
x, y ∈ X and c(x), c(y) ∈ C and c(x) 6= c(y)}.

The above observation can be generalized to a sequence of land-
marks x1, . . . , xz ∈ X , where any two consecutive landmarks
have different colors. Next we show how to use multiple land-
marks in order to get even tighter bounds for a given LC-PPSPD
query. Recall that the ChromLand index is essentially a table
storing mono-chromatic distances between landmark-vertex pairs
and bi-chromatic distances between landmark-landmark pairs. In-
tuitively, one can think of this index as an auxiliary graph GX =

S T

d{O}(Y,T) d{G}(S,X)
d{G,O}(X,Y)

X Y

Figure 3: ChromLand query-processing strategy for the query
〈s, t, {green,orange}〉. The distance d{g,o}(s, t) is approximated by
a path passing trough two landmarks, x and y. The shortest path from
s to t might not pass through x or y, but its length is upper bounded by
d{g}(s, x) + d{g,o}(x, y) + d{o}(y, t). This improves upon using only
x if dg(t, x) > d{g,o}(x, y) + d{o}(y, t).

(V,X,EX , c, w), where V is the set of vertices of the original
graph G, X ⊆ V is the set of landmarks, and c : X → L is a
function that assigns landmarks to colors. The edge set EX of this
auxiliary graph is defined as follows: there exists an edge between
any landmark-vertex pair (x, u) if and only if cd(u, x) <∞; there
exists an edge between any landmark-landmark pair (x, y) if and
only if c(x) 6= c(y) and cd(x, y) < ∞. Each edge in EX is la-
beled with the color(s) of the incident landmark(s) and is weighted
by a function w : EX → N defined as w(u, v) = cd(u, v). We
obtain the desired bound by exploiting the following result.

THEOREM 5. Let G = (V,E, L, `) be an edge-labeled graph
and X ⊆ V a set of landmarks. Let GX = (V,X,EX , c, w) be
the auxiliary graph ofG defined overG andX . Given a label setC
and two vertices u, v ∈ V , let GX [u, v, C] denote the subgraph of
GX induced by the set of vertices {u, v} ∪ {x ∈ X | c(x) ∈ C}.
For any query 〈s, t, C〉 the shortest path distance δC(s, t) be-
tween s and t computed on GX [s, t, C] is the tightest upper bound
to dC(s, t) that can be computed from the information stored by
ChromLand index.

PROOF. Given any Y ⊆ X , let spY (s, t) be the shortest-path
distance computed over the subgraph of GX induced by the ver-
tices in {s, t}∪Y . It holds that c(y) ∈ C, ∀y ∈ Y ⇒ dC(s, t) ≤
spY (s, t), as dC(u, v) ≤ cd(u, v), ∀u, v ∈ {s, t} ∪ Y . Con-
versely, it results that ∃y ∈ Y such that c(y) /∈ C ; dC(s, t) ≤
spY (s, t), because, this way, there might exist a pair of vertices
u, v ∈ {s, t} ∪ Y such that dC(u, v) > cd(u, v), and this could
violate the overall upper bound dC(s, t) ≤ spY (s, t). For this
purpose, only subsets Y ⊆ X whose landmarks are all cou-
pled with colors within the query label set C guarantee sound
upper bounds to the distance dC(s, t). The tightest among these
sound bounds is defined by taking the largest of these sets Y , i.e.,
Y = {x | x ∈ X, c(x) ∈ C}. This means that the tightest, sound
upper bound for dC(s, t) given the information in ChromLand is
equal to the shortest-path distance computed on the subgraph of
GX induced by the vertices {s, t} ∪ {x | x ∈ X, c(x) ∈ C}, i.e.,
GX [s, t, C].

The theorem suggests that to approximate dC(s, t) for a query
〈s, t, C〉 we need to consider the subgraph of GX induced by the
vertices s, t, and all landmarks inX whose color belongs to C, and
then compute the (exact) shortest-path distance between s and t on
that subgraph. This strategy requires running a shortest-path algo-
rithm (e.g., Dijkstra) on a weighted graph with O(k) vertices and
O(k2) edges; thus, the query processing of the enhanced Chrom-
Land index requires O(k2) time. Note that since k2 � n, this
strategy is faster than computing exact distances without any in-
dex. An illustration of the entire process is reported in Figure 4.

4.3 Selecting landmarks
A key result in selecting landmarks for the PowCov index, stated

in Lemma 1, is that the index can provide the exact answer to a

S T

3

1

2 4 3

2

1

1

2

Figure 4: Illustration of a ChromLand index. Each landmark
(square) is assigned to a color. Each edge is labeled with the color(s)
of the landmark(s) and weighted by the corresponding chromatic dis-
tance cd(·, ·). Given the query 〈s, t, {green, orange, red}〉, we take
the subgraph induced by s and t and all landmarks whose color is in
{g, o, r}, and we approximate d{g,o,r}(s, t) by computing the shortest-
path distance between s and t on that subgraph. In this example the
shortest path is passing only trough the green and orange landmarks,
and has length 6. Note that all bounds defined by a single landmark
give infinite distances.

query 〈s, t, C〉 only if there exists at least one landmark on a short-
est path p∗C(u, v). This statement does not hold for the Chrom-
Land index. Indeed, the following theorem shows that a single
landmark on p∗C(u, v) does not suffice; instead, the number of land-
marks should be at least as large as the number of distinct colors on
p∗C(u, v).

THEOREM 6. Given an edge-labeled graph G = (V,E, L, `),
a set of landmarksX ⊆ V allows the ChromLand index to provide
exact answers only if for all pairs u, v ∈ V and all label sets C ⊆
L, there exists a shortest path p∗C(u, v) such that |X ∩{i | (i, j) ∈
p∗C(u, v)}| ≥ |colors(p∗C(u, v))|.

PROOF. Given any two vertices u, v ∈ V and a label setC ⊆ L,
let P∗C(u, v) be the set of all C-constrained shortest path between
u and v. To prove the claim, it is sufficient to show that, if X
does not contain at least h = |colors(p∗C(u, v))| landmarks ly-
ing on some p∗C(u, v) ∈ P∗C(u, v), then there exists at least one
query that ChromLand cannot answer exactly when employing
X . To this end, note that, as each landmark has assigned only
one color, if the landmarks lying on p∗C(u, v) are less than h, for
all p∗C(u, v) ∈ P∗C(u, v), then there would be at least one color
not “covered” by any landmark on each p∗C(u, v). This means
that the ChromLand index actually considers at least one edge
in each p∗C(u, v) as missing. Thus, whatever colors are assigned
to the landmarks, the answer provided by ChromLand to a query
〈u, v, C〉 would be always > |p∗C(u, v)|, as it would be computed
by considering a path not belonging to P∗C(u, v), and, therefore,
not shortest.

The theorem suggests that landmark selection in ChromLand
is more complex than in PowCov. For instance, a vertex cover
represents no longer a valid solution. As an example, consider the
simple graph G shown in Figure 5. Although the set X = {x} is a
vertex cover of G, it is not a valid landmark set for ChromLand—
whatever color is assigned to x, there is no way to provide exact
answers to queries involving label sets with size larger than 1.
Problem formulation. Consider again the example shown in Fig-
ure 3: the shortest-path distance d{g,o}(s, t) is approximated by the
sum of three chromatic distances, i.e., d{g}(s, x) + d{g,o}(x, y) +
d{o}(y, t). Note that the smaller these chromatic distances are, the
tighter is the approximation going to be. Motivated by this exam-
ple, we focus on selecting a set of landmarks so that any vertex of
the graph is close to at least one landmark for any given color.

S T

3

1

2 4 3

2

1

1

2

U X
r r

r r

g

g o

o o

X
o g

r

p

Figure 5: Simple edge-labeled graph G where the vertex cover {x} is
not a valid landmark set for ChromLand.

Algorithm 2 ChromLandLocalSearch
Input: an edge-labeled graph G = (V,E, L, `), an integer k
Output: a set X of k landmarks, a landmark labeling function c
1: 〈X, c〉 ← randomSelect(V, L, k)
2: J∗ ← J(G,X, c)
3: repeat
4: randomly pick: a vertex u ∈ V \ X , a landmark x ∈ X , a color

l ∈ L
5: 〈X′, c′〉 ← swap(X, c, u, x, l)
6: if J(G,X′, c′) > J∗ then
7: 〈X, c〉 ← 〈X′, c′〉, J∗ ← J(G,X′, c′)
8: end if
9: until stop

We translate this intuition to an optimization problem. First,
given a landmark x ∈ X , a vertex u ∈ V , and a landmark-labeling
function c : X → L, we define the similarity function simc as
follows:

simc(x, u) =

{
0 if d{c(x)}(x, u) =∞,
d{c(x)}(x, u)−1 otherwise.

We then define our landmark-selection problem as follows.

PROBLEM 2 (CHROMLAND-LANDMARK-SELECTION).
Given an edge-labeled graph G = (V,E, L, `) and an integer
k, find a set of k landmarks X ⊆ V and a landmark-labeling
function c : X → L so as to maximize the objective function

J(G,X, c) =
∑
u∈V

max
x∈X

simc(x, u).

A solution based on k-MEDIAN. The CHROMLAND-
LANDMARK-SELECTION problem can be interpreted as a variant
of the k-MEDIAN problem [3]. Specifically, we map CHROM-
LAND-LANDMARK-SELECTION to a variant of k-MEDIAN as fol-
lows: let (M,D,H) be a bipartite graph, where M and D are
disjoint sets of vertices, and H is the set of edges. The set D,
representing “demand” points, is a copy of the vertex set V in
the original graph. The set M , representing “median” points, is
a copy of all vertex-color pairs V × L. The weight of an edge
(〈x, cx〉, u) ∈M ×D is simc(x, u).

The goal of the standard k-MEDIAN problem is to select a set of
median points M∗ ⊆M so that all demand points in D are served
by their closest median point in M∗ and the total service cost is
minimized. Here, by defining the edge weights using the similarity
function simc we cast the problem as a maximization problem.

Note that setting the set of medians M equal to V ×L allows us
to also determine the landmark-labeling function: if a median point
〈x, cx〉 is selected in the solution set M∗, we then set the color of
x equal to cx. To make this work, we need to impose the additional
constraint that the setM∗ contains only distinct landmarks, i.e., for
all distinct pairs 〈x, cx〉, 〈y, cy〉 ∈M∗ we require that x 6= y.

A key challenge is to design an algorithm that does not com-
pute/materialize all pairwise similarities, as this would require un-
affordable Ω(n2) time/space. The solution we propose is an adap-

Table 1: Characteristics of the selected datasets.

dataset # vertices # edges # labels diameter # queries
BioGrid 26 806 298 957 7 18 19 037
BioMine 943 510 5 727 448 7 16 20 799
String 1 490 098 8 886 639 6 19 18 149
DBLP 47 598 252 881 8 19 18 611

Youtube 15 088 19 923 067 5 6 23 499
synthetic 500 000 2 500 000 4–100 [5, 20] ∼ [15K, 100K]

tation of the local-search heuristic for k-MEDIAN [3] and is out-
lined as Algorithm 2. that works as follows. The algorithm starts
with a randomly chosen set of medians M∗. It then tries to swap
one of the current medians with another point that is is not cur-
rently in M∗. If the swap improves the current objective-function
score, then the swap is performed. The process is repeated for a
fixed number of iterations. As a result, for a number of iterations
equal to I , the time complexity of the algorithm is O((I + k)m).
The space complexity is instead O(nk), as it requires keeping the
distance of each point to its closest median.

5. EXPERIMENTAL EVALUATION
We experiment with both real and synthetic data, whose main

characteristics are shown in Table 1. Synthetic datasets are gen-
erated using the generator described in [6]. As far as real datasets,
BioGrid and String are protein-interaction networks obtained from
thebiogrid.org and string-db.org. The two datasets are
undirected graphs, whose vertices correspond to proteins and each
edge is labeled with the type of the interaction occurring between
the two adjacent vertices (proteins). BioMine is a recent snapshot
of the database of the BioMinE project (biomine.brgm.fr),
which is a collection of biological interactions. Each interaction
among vertices of the graph has a label denoting the type of the in-
teraction. DBLP is a subset of the popular co-authorship network
taken from [6]. The dataset is modeled in [6] as an edge-labeled
graph where an edge exists among any two authors if they have co-
authored at least once. The label on each edge is derived by con-
sidering the bag of words obtained by merging the titles of all pa-
pers coauthored by the two authors, and applying Latent Dirichlet
Allocation (LDA) [4] to automatically identify a topic distribution
on each edge. The edge label is ultimately assigned by taking the
most likely topic discovered for that edge. Youtube is a subset of
the users of the popular video-sharing service used in [26] and pub-
licly available at socialcomputing.asu.edu/datasets/
YouTube. The edges of such a dataset have been labeled by the
authors of [26] by using one of the following user relationships:
contact, co-contact, co-subscription, co-subscribed, and favorite.

The query workload of each dataset is obtained by first sampling
5 000 random pairs of connected vertices. Then, for each pair, we
pick |L| random label sets of sizes 1, 2, . . . , |L|. This results in
5 000× |L| distinct queries for each dataset. Out of these, we keep
only the ones corresponding to finite distances: there is no need to
consider unreachable pairs as the proposed indexes guarantee that
no false pasitives can arise. The exact number of queries considered
for each dataset is in Table 1 (last column).

We implemented our code in JAVA and run experiments on a sin-
gle core of an Intel Xeon server at 2.83GHz CPU and 64GB RAM.

Unless otherwise specified, the proposed PowCov and Chrom-
Land indexes are always equipped with landmarks selected accord-
ing to the strategies presented in Sections 3.3 and 4.3, respectively.

5.1 Index construction
We focus here on the index building phase, by relying on real

and synthetic datasets. In particular, a major purpose of involving
synthetic datasets is to analyze the behavior with varying the labels.

Index size. Table 2 summarizes the index size on the selected
datasets, reported as average number of distances stored per
landmark-vertex pair (unreachable vertices are omitted from the
counting). We report results for our PowCov, as well as for the in-
dex resulting from the naïve adaptation of the landmark paradigm
to the context of edge-labeled graphs discussed in the Introduc-
tion, i.e., the index that stores a number of per-landmark-vertex-
pair distances exponential in the number of labels. Particularly,
the size of any single landmark-vertex pair reported by the naïve
index refers to all label sets having finite distance for that pair.
Note that ChromLand requires exactly one distance per landmark-
vertex pair by design, regardless of the dataset; we thus avoid to
report its results.

The results in Table 2 confirm that the space required by the
naïve approch is exponential in the numer of labels (never less than
2|L|−1). By contrast, for a smaller numbers of labels (i.e., up to 7-
8 labels), the distances stored by PowCov roughly follow a linear
trend. This is especially observable in the real datasets. For larger
numbers of labels, the trend becomes more or less quadratic. In
any case, the saving with respect to the exponential space required
by the naïve approach is evident regardless of the labels, up to 95%
and 87% on real and synthetic datasets, respectively. This confirms
one of the major claims about our PowCov index: the number of
SP-minimal label sets remains small enough in practice so to guar-
antee a significant space saving.

Indexing time. In Table 3 we report the indexing time required by
our indexes averaged over the number of landmarks. We recall that
PowCov is mainly designed to handle up to a few tens of labels
(due to its intrinsic exponential-time index-building complexity),
while no limitation in the number of labels affects ChromLand.
For this purpose, results on synthetic datasets are reported up to 10
and 100 labels, for PowCov and ChromLand, respectively.

As far as PowCov, a major goal here is to compare the index-
ing time achieved by employing the proposed TraversePowerset
algorithm to the time needed by the TraversePowerset-Brute-
Force, so to validate the effectiveness of the pruning rules defined
in Section 3.2.2. The results reported in the table show that our
pruning rules indeed allow for significantly reducing the time of
the brute-force method, up to around 70%. The speed-up increases
as the number of labels increases: this is particularly appealing be-
cause it means that a larger speed-up is achieved in those cases that
require more time due to a larger number of labels.

As expected, ChromLand indexing times are not really affected
by the labels, thus testifying that ChromLand is a valid option
when the number of labels is too large for PowCov. Particularly,
the times are roughly constant for small/moderate numbers of la-
bels, while becoming decreasing when the number of labels gets
larger (i.e., ≥ 20). The motivation is the single color assigned to
each landmark: the larger the number of labels in the graph, the
smaller the set of vertices reachable with mono-chromatic paths,
and, then, the smaller the time required by any label-constrained
SSSP that is performed to build the index.

5.2 Query evaluation
Table 4 summarizes the query-processing results obtained by our

indexes. Due to limited space, we focus here only on real datasets.
For each proposed indexing method we report: (i) the absolute and
relative errors of the estimated distances with respect to the exact
distances, averaged over the number of all queries evaluated; (ii)
the fraction of queries for which the index returns the exact answer;
(iii) the fraction of queries for which the index mistakenly returns
an infinite distance (false negatives); (iv) the speed-up factor with
respect to exact shortest-path distance computation, averaged over

Table 2: Index sizes: average number of distances stored per landmark-vertex pair. The last line reports on how much (in percentage) the sizes of
the naïve approach are reduced by PowCov.

real datasets synthetic datasets (varying |L|)
index BioGrid (|L|=7) BioMine (|L|=7) String (|L|=6) DBLP (|L|=8) YouTube (|L|=5) 4 5 6 7 8 9 10

PowCov 5.79 3.88 2.01 8.63 4.72 9.12 14.73 24.35 39.09 60.36 92.19 123.7
Naïve 84.24 74.43 34.66 116.3 29.21 13.39 27.69 56.59 115.1 233.3 470.68 950.7

93.1% 94.8% 94.2% 92.6% 83.8% 31.9% 46.8% 57% 66% 74.1% 80.4% 87%

Table 3: Indexing times: average time (secs) per single landmark. PowCov times refer to the TraversePowerset algorithm (Algorithm 2), while
BruteForce times refer to the TraversePowerset-BruteForce algorithm (Algorithm 1). The last line reports on how much (in percentage) the times
of BruteForce are reduced by PowCov.

real datasets synthetic datasets (varying |L|)
index BioGrid BioMine String DBLP YouTube 4 5 6 7 8 9 10 20 30 40 50 100

ChromLand 0.2 4.43 0.04 0.18 2.5 4.1 4.8 5.7 5.6 6 6.6 6.4 3.4 2.7 2.02 1.7 1.2
PowCov 5.8 156.2 0.59 14.6 20.2 20.1 41.6 90.8 192.4 398 833.1 1783 — — — — —

BruteForce 11.3 269.8 1.09 38 29.4 33.2 76.2 179.5 409.4 963 2124 5631 — — — — —
48.9% 42.1% 45.9% 61.7% 31.1% 39.5% 45.4% 49.4% 53% 58.7% 60.8% 68.3%

Table 4: Query-processing results of the proposed indexes on real datasets with varying the number of landmarks: average absolute error, average
relative error, percentage of exact answers, percentage of false-negative answers, and speed-up factor with respect to exact distance computation.

PowCov, BioGrid
#landmarks 40 80 120 160 200

absolute error (avg) 2.02 0.87 0.69 0.65 0.35
relative error (avg) 0.44 0.2 0.16 0.15 0.09
exact answers (%) 20.8 45.1 57.9 61 82.6

false negatives (%) 0.33 0.33 0.33 0.33 0.33
speed-up factor 351 225 199 203 233

PowCov, BioMine
100 200 300 400 500
1.07 0.91 0.81 0.78 0.58
0.31 0.27 0.25 0.24 0.18
33.2 41.0 46.8 48.3 62.3
0.004 0.003 0.003 0.003 0.003
3 696 1 952 1 382 999 982

PowCov, String
100 200 300 400 500
1.19 1.06 0.88 0.87 0.72
0.38 0.35 0.29 0.3 0.24
32.3 38.2 48.2 51.7 58
34.6 24.1 19.8 14.6 12
6 758 6 585 5 667 3 921 3 090

PowCov, DBLP
40 80 120 160 200

1.44 0.97 0.68 0.59 0.45
0.24 0.16 0.11 0.1 0.08
20.5 35.9 50.2 55.9 64.7

0 0 0 0 0
29 16 15 17 19

PowCov, YouTube
40 80 120 160 200

0.46 0.38 0.34 0.32 0.3
0.28 0.24 0.22 0.21 0.2
56.6 63.2 67.1 69.4 70.1

0 0 0 0 0
1 649 1 173 966 899 882

ChromLand, BioGrid
#landmarks 40 80 120 160 200

absolute error (avg) 2.27 1.55 1.27 1.07 0.97
relative error (avg) 0.46 0.31 0.25 0.21 0.19
exact answers (%) 5.9 18.4 25 31.9 35.7

false negatives (%) 3.88 3.77 2.33 2.33 2.29
speed-up factor 344 123 58 32 23

ChromLand, BioMine
100 200 300 400 500
2.34 1.94 1.84 1.8 1.76
0.63 0.52 0.5 0.49 0.48

9 12 13.9 15 16
0.002 0.001 0.001 0.001 0.001
4 073 1 429 616 435 270

ChromLand, String
100 200 300 400 500
3.24 2.58 2.72 2.65 2.69
0.94 0.79 0.81 0.79 0.79
10.3 9.6 11.6 13.2 15.5
45 39.3 20.2 7.84 0.23

2 274 1 844 1 621 1 573 1 352

ChromLand, DBLP
40 80 120 160 200

5.69 4.72 3.84 3.37 3.06
0.93 0.77 0.63 0.55 0.5
1.5 2.9 5.9 7.7 9.5
19.1 18.6 18.4 17.8 17.6
54 16 7 4 3

ChromLand, YouTube
40 80 120 160 200

0.86 0.63 0.55 0.49 0.46
0.49 0.37 0.33 0.3 0.28
26.2 41.9 47.6 53.1 56
0.04 0.04 0.04 0.04 0.04
2 257 881 466 295 220

all queries. Particularly, we measure the speed-up factor with re-
spect to two baselines: the well-established bidirectional Dijkstra’s
algorithm [12] (adapted to the label-constrained context by ignor-
ing the edges whose label is not in the query label set C)3 and the
technique by Rice and Tsotras [23]. We always report speed-up
with respect to the fastest of such baselines. Somehow surpris-
ingly, in our experiments, bidirectional Dijkstra is often more effi-
cient than the method by Rice and Tsotras. A possible explanation
is that the technique by Rice and Tsotras is mainly designed for
road networks, whose special characteristics can be very different
than those encountered in other real edge-labeled graphs.

We study the performance varying the number k of landmarks
from log(n) to log2(n) for each dataset. For the sake of consis-
tency, we however show results over a common range of [40, 200]
(with step 40) for the smaller datasets (i.e., BioGrid, DBLP,
YouTube), and [100, 500] (with step 100) for the larger datasets
(i.e., BioMine, STRING).

As expected, PowCov is the most accurate method on all
datasets. Using k = max (i.e., either k = 200 or k = 500), the
average relative error of PowCov is never larger than 0.25, while
being even < 0.09 on DBLP. The high accuracy of PowCov is
confirmed by the percentage of exact answers, which is (again with
k = max) around 58% on String, around 60-65% on BioMine and
DBLP, 70% on YouTube, and 83% on BioGrid. The false-negative
rate is very small as well: even zero on DBLP and YouTube, while
less than 1% on BioGrid and BioMine.

Even being less accurate than PowCov, the ChromLand in-
dex reveals to be effective as well. For instance, on BioGrid and
YouTube, the ChromLand average error is around 0.2 and around
3As all the graphs used in our experiments are unweighted, in our implementation we
actually use bidirectional BFS.

0.3 (only 0.11 and 0.08 far from the error achieved by PowCov re-
spectively), and the percentage of exact answers averaged over all
datasets is 30%. Also, the false-negative rate remains small, e.g.,
almost zero on YouTube and less than 4% on BioGrid.

As a general observation, we remark that the accuracy of the
proposed indexing methods does not depend on the diameter of
the input graph: for instance, the error of both the proposed in-
dexes remains very small on both BioGrid that has diameter 18 and
YouTube that has diameter of only 6. This attests the generality of
our methods to be applied to both graphs having large diameter and
graphs where the small-world phenomenon prevails.

While the speed-up clearly depends on the number of landmarks,
it is however significant in all the cases: 1-2 orders of magnitude on
the smaller datasets (BioGrid, DBLP, YouTube), and even three
orders of magnitude on the larger datasets (BioMine, STRING).
The latter result is particularly relevant, as it testifies that the useful-
ness of the proposed indexing methods is even increasing as the size
of the input graph increases. ChromLand reflects the quadratic
complexity of the query processing with respect to the number of
landmarks. Instead, the speed-up factor of PowCov is in general
not monotone with the number of landmarks: on some datasets,
such as BioGrid and DBLP, after a drop around k = 120, the
speed-up grows again for larger k. The motivation of this behav-
ior is the following. We recall that the query processing time in
PowCov mainly depends on the (average) size of SP-minimal sets
stored in the index. Thus, the results observed suggest that the num-
ber of such SP-minimal sets tends to be small and even to decrease
as the landmarks increase. A major claim about PowCov is there-
fore supported: the number of SP-minimal sets is in practice small
enough to ensure fast query processing.

BG Str DBLP YT BG0

0.2

0.4

0.6

0.8

1
av

g
er

ro
r

avg error

PC
B−Rnd
B−Best

BG Str DBLP YT BG0

0.5

1

1.5

av
g

er
ro

r

avg error

CL
B−Rnd
B−Best

Figure 6: Landmark selection on real datasets: PowCov (left) and
ChromLand (right) vs. the B-Rnd and B-Best baselines.

5.3 Landmark selection
We next assess the importance of smart landmark selection

against random selection and other well-known baselines. For both
PowCov and ChromLand we compare the proposed landmark-
selection strategies introduced in Sections 3.3 and 4.3 against the
results obtained by the same PowCov and ChromLand indexes
when equipped with landmarks selected according to some base-
lines. Besides the most obvious baseline of selecting landmarks
at random, we consider as smarter baselines landmarks having the
best (approximated) betweenness-centrality scores, landmarks se-
lected by the TopDegreeMVC algorithm for k-MAX-VERTEX-
COVER [7] (which corresponds to selecting as landmarks the ver-
tices with highest degree), as well as landmarks selected from a
vertex cover of the input graph (according to either betweenness
centrality or degree). As far as ChromLand, we consider two vari-
ants of each baseline: one where the landmark colors are assigned
at random, and another one where the color of each landmark is
set equal to the majority color among its incident edges. For the
sake of brevity, we report results about the most obvious baseline
(totally random selection, denoted B-Rnd) and the best one over
all the other baselines (denoted B-Best).

The results of this evaluation are shown in Figure 6, where we
report the relative errors achieved by both PowCov and Chrom-
Land on all real datasets, averaged over all queries, with num-
ber of landmarks k ∈ [40..200] (BioGrid, DBLP, YouTube) or
k ∈ [100..500] (BioMine, String). It is easy to see how employ-
ing our landmark selection leads to evident accuracy improvements
with respect to the baselines, for both PowCov and ChromLand.
Using our PowCov landmarks reduces the average errors of the B-
Rnd and B-Best baselines up to 71% (on YouTube) and 32% (on
String), respectively. A similar behavior is observed with Chrom-
Land. Here, the errors of the B-Rnd and B-Best baselines are
reduced up to 68% and 47% (on BioGrid), respectively.

6. CONCLUSIONS
We addressed the problem of fast online approximation of label-

constrained shortest-path distance queries in edge-labeled graphs.
We presented two landmark-based indexes that tradeoff between
storage vs. accuracy/efficiency: the first index is faster and more
accurate, but it takes more space and is more expensive to build.
Experiments on synthetic and real-world datasets revealed the high
performance of our indexes. Both indexes achieve a speed-up of up
to 3 orders of magnitude compared to exact shortest-path distance
computation, while keeping the approximation error small.

7. REFERENCES
[1] P. Agrawal, V. K. Garg, and R. Narayanam. Link label prediction in

signed social networks. In IJCAI, 2013.
[2] R. Agrawal and R. Srikant. Fast algorithms for mining association

rules in large databases. In VLDB, 1994.

[3] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and
V. Pandit. Local search heuristics for k-median and facility location
problems. SIAM J. Comput., 2004.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
JMLR, 2003.

[5] B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl. Mining
coherent subgraphs in multi-layer graphs with edge labels. In KDD,
2012.

[6] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen. Chromatic
Correlation Clustering. In KDD, 2012.

[7] G. Cornujols, G. L. Nemhauser, and L. A. Wolsey. Worst-case and
probabilistic analysis of algorithms for a location problem.
Operations Research, 1980.

[8] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular expressions
to graph reachability and pattern queries. In ICDE, 2011.

[9] S. P. Fekete, T. Kamphans, and M. Stelzer. Shortest paths with
pairwise-distinct edge labels: Finding biochemical pathways in
metabolic networks. CoRR, abs/1012.5024, 2010.

[10] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and
Y. Elovici. Link prediction in social networks using computationally
efficient topological features. In SocialCom/PASSAT, 2011.

[11] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks.
In WEA, 2008.

[12] A. V. Goldberg and C. Harrelson. Computing the shortest path: A*
search meets graph theory. In SODA, 2005.

[13] A. Gubichev, S. J. Bedathur, S. Seufert, and G. Weikum. Fast and
accurate estimation of shortest paths in large graphs. In CIKM, 2010.

[14] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction
using supervised learning. In SIAM SDM Workshops, 2006.

[15] D. Hochbaum. Approximation algorithms for NP-hard problems.
1997.

[16] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. Computing
label-constraint reachability in graph databases. In SIGMOD, 2010.

[17] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and
T. Ideker. Pathblast: a tool for alignment of protein interaction
networks. Nucleic Acids Research, 2004.

[18] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and
embedding using small sets of beacons. In FOCS, 2004.

[19] J. Leskovec, A. Singh, and J. M. Kleinberg. Patterns of influence in a
recommendation network. In PAKDD, 2006.

[20] J. J. McAuley and J. Leskovec. Learning to discover social circles in
ego networks. In NIPS, 2012.

[21] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest path
distance estimation in large networks. In CIKM, 2009.

[22] M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest
distance computing: A query-dependent local landmark scheme. In
ICDE, 2012.

[23] M. Rice and V. J. Tsotras. Graph indexing of road networks for
shortest path queries with label restrictions. PVLDB, 2010.

[24] A. D. Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A
sketch-based distance oracle for web-scale graphs. In WSDM, 2010.

[25] C. Sommer. Shortest-path queries in static networks, 2012.
submitted, available at: www.sommer.jp/spq-survey.pdf.

[26] L. Tang, X. Wang, and H. Liu. Community detection via
heterogeneous interaction analysis. DAMI, 2011.

[27] M. Thorup and U. Zwick. Approximate distance oracles. In STOC,
2001.

[28] K. Tretyakov, A. Armas-Cervantes, L. García-Bañuelos, J. Vilo, and
M. Dumas. Fast fully dynamic landmark-based estimation of shortest
path distances in very large graphs. In CIKM, 2011.

[29] K. Xu, L. Zou, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao. Answering
label-constraint reachability in large graphs. In CIKM, 2011.

[30] M. Zaslavskiy, F. Bach, and J.-P. Vert. Global alignment of
protein-protein interaction networks by graph matching methods.
Bioinformatics, 2009.

[31] A. Zhang. Protein Interaction Networks: Computational Analysis.
Cambridge University Press, 2009.

