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Abstract

In the last years, in the context of the constraint-based pattern discovery paradigm, properties of constraints have been
studied comprehensively and on the basis of this properties, efficient constraint-pushing techniques have been defined. In
this paper we review and extend the state-of-the-art of the constraints that can be pushed in a frequent pattern computa-
tion. We introduce novel data reduction techniques which are able to exploit convertible anti-monotone constraints (e.g.,
constraints on average or median) as well as tougher constraints (e.g., constraints on variance or standard deviation). A
thorough experimental study is performed and it confirms that our framework outperforms previous algorithms for con-
vertible constraints, and exploit the tougher ones with the same effectiveness.

Finally, we highlight that the main advantage of our approach, i.e., pushing constraints by means of data reduction in a
level-wise framework, is that different properties of different constraints can be exploited all together, and the total benefit
is always greater than the sum of the individual benefits. This consideration leads to the definition of a general Apriori-like
algorithm which is able to exploit all possible kinds of constraints studied so far.
� 2006 Elsevier B.V.. All rights reserved.
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1. Introduction

Devising fast and scalable algorithms, able to crunch huge amount of data, has been so far one of the main
goals of data mining research. But now we realize that this is not enough. It does not matter how much effi-
cient such algorithms can be, the results we obtain are often of limited use in practice. Typically, the knowl-
edge we seek is in a small pool of local patterns hidden within an ocean of irrelevant patterns generated from a
sea of data. Therefore, it is the volume of the results itself that creates a second order mining problem for the
human expert. This is, typically, the case of association rules and frequent pattern mining [1], to which, during
0169-023X/$ - see front matter � 2006 Elsevier B.V.. All rights reserved.
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the last decade a lot of researchers have dedicated their (mainly algorithmic) investigations. The computa-
tional problem is that of efficiently mining patterns which satisfy a user-defined constraint of minimum fre-
quency. The simplest form of a frequent pattern is the frequent itemset.

Definition 1 (Frequent Itemset Mining). Let I ¼ fx1; . . . ; xng be a set of distinct literals, usually called items,
where an item is an object with some predefined attributes (e.g., price, type, etc.). An itemset X is a non-empty
subset of I. If jXj = k then X is called a k-itemset. A transaction database D is a bag of itemsets t 2 2I, usually
called transactions. The support of an itemset X in database D, denoted suppDðX Þ, is the number of transactions
which are superset of X. Given a user-defined minimum support r, an itemset X is called frequent in D if
suppDðX ÞP r. This defines the minimum frequency constraint: Cfreq½D;r�ðX Þ () suppDðX ÞP r. When the
dataset and the minimum support are clear from the context, we indicate the frequency constraint simply Cfreq.

Recently the research community has turned its attention to more complex kinds of frequent patterns
extracted from more structured data: sequences, trees, and graphs. All these different kinds of pattern have dif-
ferent peculiarities and application fields, but they all share the same computational aspects: a usually very
large input, an exponential search space, and a too large solution set. This situation – too many data yielding
too many patterns – is harmful for two reasons. First, performance degrades: mining generally becomes inef-
ficient or, often, simply unfeasible. Second, the identification of the fragments of interesting knowledge,
blurred within a huge quantity of mostly useless patterns, is difficult. The paradigm of constraint-based pattern

mining was introduced as a solution to both these problems. In such paradigm, it is the user which specifies to
the system what is interesting for the current application: constraints are a tool to drive the mining process
towards potentially interesting patterns, moreover they can be pushed deep inside the mining algorithm in
order to fight the exponential search space curse, and to achieve better performance [22,18,14,13].

When instantiated to the pattern class of itemsets, the constraint-based pattern mining problem is defined
as follows.

Definition 2 (Constrained Frequent Itemset Mining). A constraint on itemsets is a function C : 2I !
ftrue; falseg. We say that an itemset I satisfies a constraint if and only if CðIÞ ¼ true. We define the theory of a
constraint as the set of itemsets which satisfy the constraint: ThðCÞ ¼ fX 2 2I j CðX Þg. Thus with this
notation, the frequent itemsets mining problem requires to compute the set of all frequent itemsets ThðCfreq½D;r�Þ.
In general, given a conjunction of constraints C the constrained frequent itemsets mining problem requires to
compute ThðCfreqÞ \ ThðCÞ.

Example 1. The following is an example mining query:
Q : suppDðX ÞP 1500 ^ avgðX :weightÞ 6 5 ^ sumðX :priceÞP 22
It requires to mine, from database D, all patterns which are frequent (have a support at least 1500), have aver-
age weight at most 5 and a sum of prices at least 22.

The constraint-based mining paradigm has been successfully applied in medical domain Ordonez et al. [19],
and in biological domain Besson et al. [2]. According to the constraint-based mining paradigm, the data analyst
must have a high-level vision of the pattern discovery system, without worrying about the details of the com-
putational engine, in the very same way a database designer has not to worry about query optimization: she
must be provided with a set of primitives to declaratively specify to the pattern discovery system how the inter-
esting patterns should look like, i.e., which conditions they should obey. Indeed, the task of composing all con-
straints and producing the most efficient mining strategy (execution plan) for the given data mining query
should be left to an underlying query optimizer. Therefore, constraint-based frequent pattern mining has been
seen as a query optimization problem [17], i.e., developing efficient, sound and complete evaluation strategies
for constraint-based mining queries. Or in other terms, designing efficient algorithms to mine all and only the
patterns in ThðCfreqÞ \ ThðCÞ. A naı̈ve solution to such a problem is to first mine all frequent patterns (ThðCfreqÞ)
and then test them for constraints satisfaction. However more efficient solutions can be found by analyzing the
properties of constraints comprehensively, and exploiting such properties in order to push constraints in the
frequent pattern computation. Following this methodology, some classes of constraints which exhibit nice
properties have been individuated [18] (e.g. monotonicity, anti-monotonicity, succinctness).
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One of the toughest classes of constraints studied so far, is the class of convertible constraints [20,21]: they
are constraints for which there is no clear interplay between subset relationship and constraint satisfiability,
but an interplay can be found by arranging the items in some order. Consider for instance the constraint
defined on the average aggregate (e.g., avg(X.price) 6 v): subsets (or supersets) of a valid itemset could well
be invalid and vice versa. But, if we arrange the items in price-descending-order we can observe an interesting
property: the average of an itemset is no more than the average of its prefix itemset, according to this order.
In Pei and Han [20]; Pei et al. [21] it is shown that, since the FP-growth approach [15] to frequent itemset
mining is based on the concept of prefix-itemsets, it is quite easy to push convertible constraints in such
an algorithmic framework. The authors also state that pushing this kind of tough constraints directly into
the level-wise breadth-first exploration of the search space, performed by Apriori-like algorithms, is not
possible.

On the contrary, we have recently shown [5] how it is possible to push convertible constraints within a level-
wise computation by means of data reduction techniques, and to use the same techniques to push much tougher
constraints. Since frequent patterns are usually extracted from huge datasets, data-reduction techniques have
been proven [8,9] to be very effective in this kind of computation: by reducing the input dataset they implicitly
reduce also the search space of the computational problem, sometimes making otherwise intractable compu-
tations, feasible.

1.1. Paper contribution and organization

The contribution of this paper is threefold. First, we extend the actual state-of-the-art of constraints that
can be pushed in a frequent pattern computation, by introducing a class of tough constraints, i.e., those ones
based on variance or standard deviation, and by showing how to push them into an Apriori-like computation
by means of a data reduction technique. We characterize such class showing that it is a superclass of convert-
ible anti-monotone constraints. Therefore, our technique can be used also to push convertible constraints into
an Apriori-like computation. Second, we show that, in the case of convertible constraints, other ad-hoc prun-
ing strategies can be adopted in order to improve the efficiency of our method, outperforming previously pro-
posed FP-growth based algorithms Pei and Han [20]. Third, we define a general Apriori-like framework, based
on data reduction techniques, which is able to push all possible kinds of constraints studied so far. Note that
all the previously proposed constraint pushing techniques were designed to work on their own. Conversely, we
show that all of these constraints can be pushed in a unique, general framework. Our framework is unifying
not only because it fits every constraint, but also because it can cope with any conjunction of constraints, thus
giving even more expressive power to user’s queries.

(1) In Section 2, as a side contribution, we provide an exhaustive state-of-the-art of constraint pushing tech-
niques. We provide examples of interesting and meaningful constraints do not fall in any of the previ-
ously identified classes of constraints, and neither can be pushed by previous algorithms.

(2) In Section 3, we introduce the class of loose anti-monotone constraints and we deeply characterize it by
showing that it is a superclass of convertible anti-monotone constraints (e.g. constraints on average or
median) and that it contains tougher constraints (e.g. variance or standard deviation). We identify an
interesting property of loose anti-monotone constraints which allows input data reduction. Exploiting
this property, we extend ExAMiner [9], which is a level-wise Apriori-like algorithmic framework based
on data-reduction techniques, in order to make it cope with loose anti-monotonicity. The resulting algo-
rithm is named ExAMinerLAM.

(3) A thorough experimental study is performed. It confirms that by exploiting loose anti-monotonicity,
ExAMinerLAM is able to outperform previous algorithms for convertible constraints, and to treat much
tougher constraints with the same effectiveness as easier ones.

(4) In Section 4, we develop novel advanced pruning techniques which can be adopted in the case of con-
vertible constraints. The resulting algorithm is named ExAMinerCAM, and it further improves the perfor-
mance of our framework.

(5) In Section 5, we introduce ExAMinerGEN, a general framework for constrained pattern mining, able to
push into the mining process every conjunction of constraints that have been studied so far.
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2. Related work and constraints classification

In this section, by reviewing all fundamental works on constrained frequent itemsets mining, we recall a
classification of constraints and their properties.
2.1. Anti-monotone and succinct constraints

A first work defining classes of constraints which exhibit nice properties is Ng et al. [18]. In that paper is
introduced an Apriori-like algorithm, named CAP, which exploits two properties of constraints, namely anti-

monotonicity and succinctness, in order to reduce the frequent itemsets computation. Four classes of con-
straints, each one with its own associated computational strategy, are identified:

(1) constraints that are anti-monotone but not succinct;
(2) constraints that are both anti-monotone and succinct;
(3) constraints that are succinct but not anti-monotone;
(4) constraints that are neither.
Definition 3 (Anti-monotone constraint). Given an itemset X, a constraint CAM is anti-monotone if 8Y � X :
CAMðX Þ ) CAMðY Þ.

The frequency constraint is the most known example of a CAM constraint. This property, the anti-monoto-

nicity of frequency, is used by the Apriori [1] algorithm with the following heuristic: if an itemset X does not
satisfy Cfreq, then no superset of X can satisfy Cfreq, and hence they can be pruned. This pruning can affect a
large part of the search space, since itemsets form a lattice. Therefore the Apriori algorithm (see Algorithm 1)
operates in a level-wise fashion moving bottom-up, level-wise, on the itemset lattice, from small to large item-
sets, generating the set of candidate itemsets at iteration k (the set Ck) from the set of frequent itemsets at the
previous iteration (the set Lk�1). This way, each time it finds an infrequent itemset it implicitly prunes away all
its supersets, since they will not be generated as candidate itemsets.
Algorithm 1. Apriori

Input: D; r
Output: ThðCfreq½D;r�Þ
1: C1  ffigji 2 Ig; k 1
2: while Ck 5 ; do

3: Lk  countðD;CkÞ
4: Ck+1 generate_apriori(Lk)
5: k + +
6: ThðCfreq½D;r�Þ  

S
kLk
Other CAM constraints can easily be pushed deeply down into the frequent itemsets mining computation
since they behave exactly as Cfreq: if they are not satisfiable at an early level (small itemsets), they have no hope
of becoming satisfiable later (larger itemsets). Conjoining other CAM constraints to Cfreq we just obtain a more
selective anti-monotone constraint.

Example 2. If ‘‘price’’ has values in Rþ, then the constraint sum(X.price) 6 500 is anti-monotone. Trivially, if
an itemset X satisfies such constraints, then any of its subsets will satisfy the constraint as well. On the other
hand, if X does not satisfy the constraint, then it can be pruned since none of its supersets will satisfy the
constraint.

Informally, a succinct constraint CS is such that, whether an itemset X satisfies it or not, can be determined
based on the singletons which are in X.
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Definition 4 (Succinct constraint). An itemset Is � I is a succinct set, if it can be expressed as rpðIÞ for
some selection predicate p, where r is the selection operator. SP � 2I is a succinct powerset, if there is a fixed
number of succinct sets I1;I2; . . . ;Ik � I, such that SP can be expressed in terms of the strict powersets of
I1;I2; . . . ;Ik using union and minus. Finally, a constraint Cs is succinct provided that ThðCSÞ is a succinct
powerset.

Example 3. Consider constraint C � S:type � ffood; toysg, the pruned search space consists of all those sets
that contain at least one item of type food and at least one item of type toys. Let I2;I3;I4 be the sets
rtype¼0food 0ðIÞ, rtype¼0toys0ðIÞ, and rtype 6¼0food0^type 6¼0toys0ðIÞ respectively. Then, C2 is succinct because ThðCÞ can be

expressed as: 2I � 2I2 � 2I3 � 2I4 � 2I2[I4 � 2I3[I4 .

A CS constraint is pre-counting pushable, i.e., it can be satisfied at candidate-generation time just taking into
account the itemset and the single items satisfying the constraint. These constraints are pushed in the level-wise
computation by substituting the usual generate_apriori procedure (Algorithm 1, line 4), with the proper (w.r.t.
CS) candidate generation procedure, which prunes every itemset which does not satisfy the constraint and that
it is not a subset of any further valid itemset.

Constraints that are both anti-monotone and succinct can be pushed completely in the level-wise compu-
tation before it starts (at pre-processing time).

Example 4. For instance, consider the constraint min(X.price) P v. It is straightforward to see that it is both
anti-monotone and succinct. Thus, if we start with the first set of candidates formed by all singleton items having
price greater than v, during the computation we will generate all those itemsets satisfying the given constraint.

Constraints that are neither succinct nor anti-monotone are pushed in the CAP [18] computation by induc-
ing weaker constraints which are either anti-monotone and/or succinct.

Example 5. Consider the constraint avg(X.price) 6 v which is neither succinct nor anti-monotone. We can
push the weaker constraint min(X.price) 6 v with the advantage of reducing the search space and the guarantee
that at least all the valid itemsets will be generated.
2.2. Monotone constraints

Monotone constraints work the opposite way of anti-monotone constraints.

Definition 5 (Monotone constraint). Given an itemset X, a constraint CM is monotone if: 8Y � X : CMðX Þ )
CMðY Þ.

Example 6. The constraint sum(X.price) P 500 is monotone, since all prices are not negative. Trivially, if an
itemset X satisfies such constraint, then any of its supersets will satisfy the constraint as well.

Since the frequent itemset computation is geared on Cfreq, which is anti-monotone, CM constraints have
been considered more hard to be pushed in the computation and less effective in pruning the search space.
Many works [12,11,10,7] have studied the computational problem ThðCfreqÞ \ ThðCMÞ focussing on its search
space, and trying some smart exploration of it. For example, Bucila et al. [11] try to explore the search space
from the top and from the bottom of the lattice in order to exploit at the same time the symmetric behavior of
monotone and anti-monotone constraints. Anyway, all of these approaches face the inherent difficulty of the
computational problem: the CAM-CM tradeoff that can be described as follows. Suppose that an itemset has
been removed from the search space because it does not satisfy a monotone constraint. This pruning avoids
the expensive support count for this itemset, but on the other hand, if we check its support and find it smaller
than the frequency threshold, we may prune away all the supersets of this itemset, thus saving the support
count for all of them. In other words, by monotone pruning we risk to lose anti-monotone pruning opportu-
nities given by the pruned itemset. The tradeoff is clear: pushing monotone constraint can save frequency tests,
however the results of these tests could have lead to more effective anti-monotone pruning. In Bonchi et al. [8]
a completely new approach to exploit monotone constraints by means of data-reduction is introduced. The



382 F. Bonchi, C. Lucchese / Data & Knowledge Engineering 60 (2007) 377–399
ExAnte Property is obtained by shifting attention from the pattern search space to the input data. Indeed, the
CAM-CM tradeoff exists only if we focus exclusively on the search space of the problem, while if exploited
properly, monotone constraints can reduce dramatically the data in input, in turn strengthening the anti-
monotonicity pruning power. With data reduction techniques we exploit the effectiveness of a CAM-CM syn-
ergy. The ExAnte property states that a transaction which does not satisfy the given monotone constraint
can be deleted from the input database since it will never contribute to the support of any itemset satisfying
the constraint.

Proposition 1 (ExAnte property). Given a transaction database D and a conjunction of monotone constraints
CM, we define the l-reduction of D as the dataset resulting from pruning the transactions that do not satisfy CM:

lCM
ðDÞ ¼ ft 2 Djt 2 ThðCMÞg. This data reduction does not affect the support of solution itemsets: 8X 2

ThðCMÞ : suppDðX Þ ¼ supplCM
ðDÞðX Þ.

A major consequence of removing transactions from input database in this way, is that it implicitly reduces
the support of a large amount of itemsets that do not satisfy CM as well, resulting in a reduced number of can-
didate itemsets generated during the mining algorithm. Even a small reduction in the database can cause a huge
cut in the search space, because all supersets of infrequent itemsets are pruned from the search space as well. In
other words, monotonicity-based data-reduction of transactions strengthens the anti-monotonicity-based
pruning of the search space. This is not the whole story, in fact, singleton items may happen to be infrequent
after the pruning and they cannot only be removed from the search space together with all their supersets, but
for the same anti-monotonicity property they can be deleted also from all transactions in the input database
(this anti-monotonicity-based data-reduction is named a-reduction). Removing items from transactions brings
another positive effect: reducing the size of a transaction which satisfies CM can make the transaction violate it.
Therefore a growing number of transactions which do not satisfy CM can be found. Obviously, we are inside a
loop where two different kinds of pruning (a and l) cooperate to reduce the search space and the input dataset,
strengthening each other step by step until no more pruning is possible (a fix-point has been reached). This is the
key idea of the ExAnte pre-processing method. In the end, the reduced dataset resulting from this fix-point com-
putation is usually much smaller than the initial dataset, and it can feed any frequent itemset mining algorithm
for a much smaller (but complete) computation. This simple yet very effective idea has been generalized from
pre-processing to effective mining in two main directions: in an Apriori-like breadth-first computation in
ExAMiner [9], and in a FP-growth based depth-first computation in FP-Bonsai [3].

2.2.1. The ExAMiner algorithm

ExAMiner [9], generalizes the ExAnte idea to reduce the problem dimensions at all levels of a level-wise
Apriori-like computation. In this way, the CAM-CM synergy is effectively exploited at each iteration of the min-
ing algorithm, and not only at pre-processing as done by ExAnte, resulting in significant performance
improvements. To this purpose, the following set of data reduction techniques, which are based on the
anti-monotonicity of Cfreq (see Bonchi et al. [9] for the proof of correctness) are coupled with the l-reduction
for CM constraints as described in Proposition 1.

Proposition 2 (Anti-monotonicity based data reductions). At the generic level k of the level-wise computation:

GkðiÞ: an item which is not subset of at least k frequent k-itemsets can be pruned away from all transactions in D.

TkðtÞ: a transaction which is not superset of at least k + 1 frequent k-itemsets can be removed from D.

LkðiÞ: given an item i and a transaction t, if the number of frequent k-itemsets which are superset of i and subset

of t is less than k, then i can be pruned away from transaction t.

Essentially ExAMiner is an Apriori-like algorithm, which at each iteration k � 1 produces a reduced data-
set Dk to be used at the subsequent iteration k. Each transaction in Dk, before participating to the support
count of candidate itemsets, is reduced as much as possible by means of Cfreq-based data reduction, and only
if it survives to this phase, it is effectively used in the counting phase. Each transaction which arrives to the
counting phase, is then tested against the CM (l-reduction) , and reduced again as much as possible, and only
if it survives to this second set of reductions, it is written to the transaction database for the next iteration
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Dkþ1. The procedure we have just described, is named count&reduce (see Algorithm 2), and substitutes the
usual support counting procedure of Apriori (Algorithm 1, line 3). In Algorithm 2 in order to implement
the data-reduction GkðiÞ we use an array of integers Vk (of the size of Items), which records for each item
the number of frequent k-itemsets in which it appears. This information is then exploited during the subse-
quent iteration k + 1 for the global pruning of items from all transaction in Dkþ1 (lines 3 and 4 of the
pseudo-code). On the contrary, data reductions TkðtÞ and LkðiÞ are put into effect during the same iteration
in which the information is collected. Unfortunately, they require information (the frequent itemsets of car-
dinality k) that is available only at the end of the actual counting (when all transactions have been used). How-
ever, since the set of frequent k-itemsets is a subset of the set of candidates Ck, we can use such data reductions
in a relaxed version: we just check the number of candidate itemsets X which are subset of t (t.count in the
pseudo-code, lines 10 and 18) and which are superset of i (i.count in the pseudo-code, lines 9 and 14).
Algorithm 2. count&reduce

Input: Dk; r;CM;Ck; V k�1

1: for all i 2 I do Vk[i] 0
2: for all tuples t in Dk do

3: for all i 2 t do if Vk�1[i] < k � 1
4: then t tni
5: else i.count 0
6: if jtjP k and CMðtÞ then

7: for all X 2 Ck, X � t do

8: X.count++; t.count++
9: for all i 2 X do i.count++
10: if X.count = r then

11: Lk Lk [ {X}
12: for all i 2 X do Vk[i] ++
13: if jtjP k + 1 and t.count P k + 1 then

14: for all i 2 t if i.count < k

15: then t tni
16: if jtjP k + 1 and CMðtÞ then
17: write t in Dkþ1
2.3. Convertible constraints

In Pei and Han [20]; Pei et al. [21] the class of convertible constraints is introduced, and an FP-growth
based methodology to push such constraints is proposed.

Definition 6 (Convertible constraints). A constraint CCAM is convertible anti-monotone provided there is an
order R on items such that whenever an itemset X satisfies CCAM, so does any prefix of X. A constraint CCM is
convertible monotone provided there is an order R on items such that whenever an itemset X violates CCM, so
does any prefix of X.

In order to be convertible, a constraint must be defined over a Prefix Increasing (resp. Decreasing) Function,
i.e. a function f : 2I ! R such that for every itemset S and item a, if 8x 2 S; xRa then f(S) 6 (resp. P)
f(S [ {a}). Let f be a prefix increasing (resp. decreasing) function w.r.t. a given order R. Then f(X) P v is a
convertible monotone (resp. anti-monotone) constraint, while f(X) 6 v is a convertible anti-monotone (resp.
monotone) constraint.

Example 7 (avg constraint is convertible). Let R be the value-descending order. It is straightforward to see
that avg is a prefix decreasing function w.r.t. R. This means that avg(X) P v is a CCAM constraint and
avg(X) 6 v is CCM w.r.t. the same order.



384 F. Bonchi, C. Lucchese / Data & Knowledge Engineering 60 (2007) 377–399
Interestingly, if the order R�1 (i.e. the reversed order of R) is used, the constraint avg(S) P v can be shown
convertible monotone, and avg(S) 6 v convertible anti-monotone. Constraints which exhibit this interesting
property of being convertible in both a monotone or an anti-monotone constraint, are called strongly

convertible.
Clearly, not every convertible constraint is strongly convertible.

Example 8. The constraint sum(X.price) P v, being monotone, is also convertible monotone: just pick any
order on items. But there is no order for which we can convert such constraint to an anti-monotone one.

In Pei and Han [20], two FP-growth based algorithms are introduced: FICA to mine ThðCfreqÞ \ ThðCCAMÞ,
and FICM to mine ThðCfreqÞ \ ThðCCMÞ. A major limitation of any FP-growth based algorithm is that the ini-
tial database (internally compressed in the prefix-tree structure) and all intermediate projected databases must
fit into main memory. If this requirement cannot be met, these approaches can simply not be applied anymore.
This problem is even harder with FICA and FICM: in fact, using an order on items different from the fre-
quency-based one, makes the prefix-tree lose its compressing power. Thus we have to manage much greater data
structures, requiring a lot more main memory which might not be available. This fact is confirmed by our exper-
imental analysis reported in Section 3.2: sometimes FICA is slower than FP-growth, meaning that having con-
straints brings no benefit to the computation. Another important drawback of this approach is that it is not
possible to take full advantage of a conjunction of different constraints, since each constraint in the conjunction
could require a different ordering of items. In our data-reduction based approach we can fully exploit different
kind of constraints: the more constraints we have the stronger is the data-reduction effect (see later Example 13).
Finally, while in FICA the constraint is effectively exploited to reduce the growing of the tree, thus producing
a real pruning of the search space, the same does not happen with FICM. Strictly speaking, this algorithm
cannot be considered a constraint-pushing technique, since it generates the complete set of frequent itemsets,
no matter whether they satisfy or not CCM. The only advantage of FICM against a pure generate and test algo-
rithm is that FICM only tests some of frequent itemsets against CCM: once a frequent itemset satisfies CCM, all
frequent itemsets having it as a prefix also are guaranteed to satisfy the constraint.

2.4. Non-convertible constraints

Unfortunately, many constraints does not fall in any of the classes we described above. Therefore, the clas-
sification of constraints needs to be extended to new interesting constraints, in order to discover new strategy
that can help in exploiting such constraints during mining process.

Example 9 (var constraint is not convertible). Calculating the variance is an important task of many statistical
analysis: it is a measure of how spread out a distribution is. The variance of a set of number X is defined as:
varðX Þ ¼

X
i2X
ði� avgðX ÞÞ2

jX j
A constraint based on var is not convertible. Otherwise there is an order R of items such that var(X) is a prefix
increasing (or decreasing) function. Consider a small dataset with only four items I ¼ fA;B;C;Dg with asso-
ciated prices P = {10,11,19,20}. The lexicographic order R1 ¼ fABCDg is such that var(A) 6 var(AB) 6
var(ABC) 6 var(ABCD), and it is easy to see that we have only other three orders with the same property:
R2 ¼ fBACDg; R3 ¼ fDCBAg; R4 ¼ fCDBAg. But, for R1, we have that var(BC) i var(BCD), which means
that var is not a prefix increasing function w.r.t. R1. Moreover, since the same holds for R2, R3, R4, we can
assert that there is no order R such that var is prefix increasing. An analogous reasoning can be used to show
that it neither exists an order which makes var a prefix decreasing function.

Following a similar reasoning we can show that other interesting constraints, such as for instance those
ones based on standard deviation (std) or unbiased variance estimator (varN�1) or mean deviation (md), are
not convertible as well.

A first work, trying to address the problem of how to push constraints which are not convertible, is Kifer
et al. [16]. The framework proposed in that paper is based on the concept of finding a witness, i.e. an itemset
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such that, by testing whether it satisfies the constraint we can deduce information about properties of other
itemsets, that can be exploited to prune the search space. This idea is embedded in a depth-first visit of the
itemsets search space. The authors instantiate their framework to the constraint based on the variance aggre-
gate, which we also study in this paper. Although the authors describe algorithms to efficiently find a witness
for both the avg and var constraints, the work in Kifer et al. [16] is mainly theoretical and the proposed algo-
rithms have not been implemented nor experimented. The main drawback of their proposal is the following: it
may require quadratic time in the number of frequent singletons to find a witness. The cost can be amortized if
items are reordered, but this leads to the same problems discussed for FP-growth based algorithms. Moreover,
even if a nearly linear time search is performed, this is done without any certainty of finding a witness which
will help to prune the search space. In fact, if the witness found satisfies the given constraint, no pruning will
be possible and the search time will be wasted. Our approach is completely orthogonal: while they try to
explore the exponentially large search space in some smart way, we massively reduce the dataset as soon as
possible, reducing at the same time the search space and obtaining a progressively easier mining problem.
3. Loose anti-monotone constraints

As we have seen in the previous section, many interesting constraints, e.g., those one based on var or std, do
not fall in any previously defined class of constraints. Recently, we have individuated a new class of constraints
sharing a nice property that we have named ‘‘loose anti-monotonicity’’ [5]. This class is a proper superclass of
convertible anti-monotone constraints, and it can also deal with other tougher constraints. Based on loose anti-
monotonicity we can define a data reduction strategy, which makes the mining task feasible and efficient.

Recall that an anti-monotone constraint is such that, if satisfied by an itemset then it is satisfied by all its
subsets. We define a loose anti-monotone constraint as such that, if it is satisfied by an itemset of cardinality k

then it is satisfied by at least one of its subsets of cardinality k � 1. Since some of these interesting constraints
make sense only on sets of cardinality at least 2, in order to get rid of such details, we shift the definition of
loose anti-monotone constraint to avoid considering singleton.

Definition 7 (Loose Anti-monotone constraint). Given an itemset X with jXj > 2, a constraint is loose anti-

monotone (denoted CLAM) if: CLAMðX Þ ) 9i 2 X : CLAMðX n figÞ.

The next proposition and the subsequent example state that the class of CLAM constraints is a proper super-
class of CCAM (convertible anti-monotone constraints).

Proposition 3. Any convertible anti-monotone constraint is trivially loose anti-monotone: if a k-itemset satisfies
the constraint so does its (k � 1)-prefix itemset.

Example 10 (var, std, md, varN�1 constraints are loose anti-monotone). We show that the constraint
var(X.A) 6 v is a CLAM constraint. Given an itemset X, if it satisfies the constraint so trivially does Xn{i}, where
i is the element of X which has associated a value of A which is the most far away from avg(X.A). In fact, we
have that var({Xn{i}}.A) 6 var(X.A) 6 v, until jXj > 2. Conversely, taking the element of X which has associ-
ated a value of A which is the closest to avg(X.A) we can show that var(X.A) P v is a CLAM constraint. Since the
standard deviation std is the square root of the variance, it is straightforward to see that std(X.A) 6 v and
std(X.A) P v are both CLAM. The mean deviation is defined as: mdðX Þ ¼

P
i2X ji� avgðX Þj

� �
=jX j. Once again,

we have that md(X.A) 6 v and md(X.A) P v are CLAM. It is easy to prove that also constraints defined on the
unbiased variance estimator, varN�1 ¼ ð

P
i2X ði� avgðX ÞÞ2Þ=ðjX j � 1Þ are loose anti-monotone (Fig. 1).

The next key Theorem indicates how a CLAM constraint can be exploited in a level-wise Apriori-like com-
putation by means of data-reduction. It states that if at a certain iteration k > 2 a transaction is not superset of
at least one frequent k-itemset which satisfy the CLAM constraint (i.e. it is a solution), then the transaction can
be deleted from the database.

Theorem 1. Given a transaction database D, a minimum support threshold r, and a CLAM constraint, at the

iteration k P 2 of the level-wise computation, a transaction t 2 D such that: 9=X � t, jX j ¼ k;X 2 ThðCfreq½D;r�Þ \
ThðCLAMÞ can be pruned away from D, since it will never be superset of any solution itemsets of cardinality > k.



Fig. 1. Characterization of the classes of commonly used constraints.
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Proof. Suppose that exists Y � t; jY j ¼ k þ j; Y 2 ThðCfreq½D;r�Þ \ ThðCLAMÞ. For loose anti-monotonicity this
implies that exists Z � Y, jZj = k + j � 1 such that CLAMðZÞ. Moreover, for anti-monotonicity of frequency
we have that Cfreq½D;r�ðZÞ. The reasoning can be repeated iteratively downward to obtain that must exist
X � t; jX j ¼ k; X 2 ThðCfreq½D;r�Þ \ ThðCLAMÞ. h

Note that a conjunction of loose anti-monotone constraints is not a loose anti-monotone constraint any-
more, and therefore each constraint in a conjunction must be treated separately. However, a transaction can
be pruned whenever Theorem 1 holds for even only one of the constraints, because every itemset in the trans-
action will not satisfy such constraint and, consequently, any conjunction including it.

Example 11. Given the two constraints C1
LAM � avgðX :A1ÞP 140 and C2

LAM � avgðX :A2Þ 6 320, where the
values of the attributes A1 and A2 are respectively A1 = ha:125, b:145, c:150i and A2 = ha:300, b:310, c:350i,
the conjunction C1

LAM ^ C2
LAM is not a loose anti-monotone constraint. Indeed, the itemset X = {abc} satisfies

C1
LAM ^ C2

LAM, but the only subset of X satisfying C1
LAM is {bc}, while the only subset satisfying C2

LAM is {ab},
therefore there is no item i 2 X such that C1

LAM ^ C2
LAMðX n figÞ holds.

In the next section we exploit such property of CLAM constraints in a level-wise Apriori-like computation by
means of data-reduction.

3.1. The ExAMinerLAM algorithm

As in ExAMiner (Section 2.2.1) the anti-monotonicity based data reductions of Proposition 2, were coupled
with the l-reduction for CM constraints of Proposition 1; here, in order to cope with the mining problem
ThðCfreqÞ \ ThðCLAMÞ, we couple the same set of Cfreq-based data reduction techniques with the CLAM-based
data reduction technique described in Theorem 1. This is done by extending the count&reduce procedure (Algo-
rithm 2) to implement also the CLAM-based data reduction. The resulting algorithm is named ExAMinerLAM.

Our thorough experimental study (reported in Section 3.2) confirms that by exploiting loose anti-monoto-
nicity, ExAMinerLAM is able to outperform previous algorithms for convertible constraints (e.g. constraints on
average or median), and to treat much tougher constraints (e.g. variance or standard deviation) with the same
effectiveness as easier ones.

3.1.1. Run through example

In Fig. 2(b) we have a transactional dataset and an associated item-price table in Fig. 2(a). Suppose that we
want ExAMinerLAM to mine frequent itemsets (minimum support r = 3) having a small (610) variance of
prices. In the following we denote with Ck the candidate k-itemsets, with Lk the candidate k-itemsets that
are also frequent, and with Rk the set of k-itemsets that are frequent and that satisfy the constraint.

During the first iteration no pruning is possible. We just count the support of singletones C1 = {a,b,c,
d,e, f,g,h, i, j} using all transactions in the dataset. At the end of the first iteration we discover that items f

and h are infrequent, and therefore they will be discarded during the next iteration.
All the other singletones are frequent and, since the variance of a singleton is zero they all satisfy the CLAM

constraint, therefore they are all valid itemsets: L1 = R1 = {a,b,c,d,e,g, i, j}.



Fig. 2. Run through example.
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During the second iteration we generate the set of candidates C2 from L1, but both TkðtÞ and LkðiÞ fail in
reducing the input dataset. Luckily we can exploit the loose anti-monotonicity of the var constraint to remove
some transaction. In fact, transaction 4 is superset of 3 candidate itemsets {ab,ac,bc}, all having a variance
greater than 10. Thus the it can be pruned according to Theorem 1. It is easy to see that in the same way also
the transactions 1, 3 and 6 can be pruned. In Fig. 2(c) we have the reduced dataset we obtain at end of this sec-
ond iteration. Moreover we obtain the set of frequent itemsets L2 = {ab,ac,ag,ai,bc,cd,cg,ci,dg,gi,aj,cj,gj},
among which only 4 satisfy the var constraint: R2 = {cg,gi,cj,gj}.

We start the third iteration and as usual we generate the set of candidates C3 = {abc,acg,aci,acj,
agi,agj,cdg,cgi,cgj}. At this point, we discover that only 3 itemsets are frequent L3 = {cgi,acg,cdg} and only
one is a solution R3 = {cgi}. The previous CLAM pruning has reduced the dataset in such a way that now we
can perform additional Cfreq-based pruning until get the dataset in Fig. 2(d), where we have only two trans-
actions and therefore no longer itemset can have support at least 3.

The computation on this toy example would be easily done even without any data-reduction, but we have
always to keep in mind that frequent patterns are usually extracted from huge datasets. Therefore, by reducing
the input size we also reduce the exponential search space and thus the computational cost, sometimes making
feasible computations otherwise intractable.

3.2. Loose anti-monotonicity: experimental analysis

In this section we describe in details the experiments we have conducted in order to assess loose anti-mono-
tonicity effectiveness on both convertible constraints (e.g. avg(X.A) P m) and tougher constraints (e.g.
var(X.A) 6 m). The results are reported in Fig. 3.

All the tests were conducted on a Windows XP PC equipped with a 2.8 GHz Pentium IV and 512 MB of
RAM memory, within the cygwin environment. The datasets used in our tests are those ones of the FIMI
repository1, and the constraints were applied on attribute values generated randomly with a gaussian distri-
bution within the range [0,150,000].
1
http://fimi.cs.helsinki.fi/data/.

http://fimi.cs.helsinki.fi/data/
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Fig. 3. Loose anti-monotonicity: experimental analysis results. (a) Various algorithms, dataset BMS-POS, r = 400, CLAM � varðX :SÞ 6 m;
(b) ExAMinerLAM, dataset BMS-POS, r = 400, CLAM � varðX :SÞ 6 m; (c) ExAMiner, dataset BMS-POS, r = 300, CCAM � avgðX :SÞP m;
(d) ExAMinerCAM, dataset BMS-POS, r = 300, CCAM � avgðX :SÞP m; (e) various algorithms, dataset BMS-POS, r = 300, CCAM �
avgðX :SÞP m; (f) various algorithms, various datasets, various r, CCAM � avgðX :SÞP m.
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In Fig. 3(a) and (b) tests over the CLAM constraint var(X.A) 6 m are reported. Since we are pushing a CLAM

constraint never studied before, we compare ExAMinerLAM against two unconstrained computation: FP-
Growth and ExAMiner without constraints (i.e. it only exploits Cfreq-based data reduction). Such tests high-
light the effectiveness of loose anti-monotonicity: we have a speed up of much more than one order of mag-
nitude, and a data reduction rate up to four order of magnitude. In Fig. 3(c) and (d) we compared the dataset
reduction power of ExAMiner against ExAMinerLAM when mining with the CCAM constraint avg(X.A) P m.
Since ExAMiner is designed to deal with monotone constraints, and avg is not, such constraint is pushed by
inducing the weaker but monotone constraint max(X.A) P v as done in Bonchi et al. [9]. This test is useful to
understand how much the new class of constraints is able to prune the input data against a previous state of
the art algorithm such as ExAMiner. In Fig. 3(c) we can see that ExAMiner is able to decrease the dataset
size up to nearly three orders of magnitude. On the other hand, ExAMinerLAM, see Fig. 3(d), behaves much
better, since it is able prune the dataset more effectively, in such a way that the dataset is entirely pruned away
with the most selective constraints after the first three iterations. This behavior is reflected in run-time
performances: ExAMinerLAM is one order of magnitude faster than ExAMiner as reported in Fig. 3(e). Con-
versely, FICA is not able to bring such improvements. In Fig. 3(f) we report the speed-up of ExAMinerLAM

w.r.t. ExAMiner and FICA w.r.t. FP-growth. The tests conducted on various datasets show that exploit-
ing loose anti-monotonicity property brings a higher speed up than exploiting convertibility. In fact,
ExAMinerLAM exhibits in average a speed up of factor 100 against its own unconstrained computation, while
FICA always provides a speed up w.r.t. FP-growth of a factor lower than 10, and sometimes it is
even slower than its unconstrained version. In other words, FP-Growth followed by a filtering of the
output in some cases is better that its variant FICA, which is explicitly geared on constrained mining.
As we have discussed in Section 2.3 this is due to the items ordering based on attribute values and not on
frequency.

In the next section we introduce three advanced pruning techniques which can be adopted when mining
frequent patterns with convertible constraints. These pruning techniques, conjoined with the loose anti-mono-
tonicity data reduction further improve the performance of our framework.
4. Advanced pruning techniques

In the previous section we have shown that, by exploiting only the property (Theorem 1) for loose anti-
monotone constraints, ExAMinerLAM is able to outperform the state-of-the-art algorithms for frequent pat-
tern mining under convertible (CCAM) constraints (see Fig. 3(e)). However, in the case of convertible con-
straints, we have further data reduction opportunities then using CLAM pruning only. In this Section we
focus on the mining problem ThðCfreqÞ \ ThðCCAMÞ and we introduce three novel strategies that allow to boost
the pruning power of our data reduction based framework. The algorithm resulting by conjoining these three
data reduction techniques to the loose anti-monotonicity technique is named ExAMinerCAM.

For sake of clarity of presentation, we always refer to avg(X.A) P m as prototypical CCAM constraint with-
out any loss of generality. Similarly to Pei and Han [20]; Pei et al. [21] we require items to be sorted by
descending (ascending) order of attribute if CCAM is defined over a prefix decreasing (increasing) function f

(we denote this order by �). Transactions in D, frequent itemsets in Li, as well as candidate itemsets in Ci,
must be ordered accordingly. Under this assumption three pruning techniques can be exploited.
4.1. Pre-counting reduction

At the beginning of iteration k of the level-wise framework, the average of the first k items of each trans-
action t 2 D is calculated, and if it is smaller than m, then it cannot exist any X � t, jXjP k such that
avg(X.A) P m. Therefore transaction t cannot support any solution itemset for the current and future itera-
tions, and thus they can be removed from D. The dataset obtained after such reduction is denoted D0. In Algo-
rithm 3 prefix(I,n) denotes the n-prefix of I (i.e. the first n items of I).
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Algorithm 3. Pre-counting Reduction

Input: D; k;CCAM

Output: D0

1: D0  ;
2: for all t 2 D do

3: if CCAMðprefixðt; kÞÞ then
4: D0  D0 [ t
Theorem 2 (Pre-counting Reduction). Given a dataset D and a convertible anti-monotone constraint CCAM. Let

D0 be the reduced dataset produced by Algorithm 3. It holds that:
8X 2 ThðCCAMÞ; jX jP k : suppDðX Þ ¼ suppD0 ðX Þ
Proof. For each X 2 ThðCCAMÞ there exist suppDðX Þ transactions t � X in D. If CCAM is defined over a prefix
decreasing function f as f(S.A) P v, then items in t are sorted in descending order, and therefore
f ðprefixðt; kÞ:AÞP f ðX :AÞP v) CCAMðprefixðt; kÞÞ. By construction every of such t will be included in D0,
i.e. X turns out to be a frequent itemset and with the same support in D0 as in D. Analogously when CCAM

is defined over a prefix increasing function. h
4.2. Counting early stopping

During the usual counting procedure of Apriori (Algorithm 1, line 3) at the iteration k, for each transaction
t, all its k-subsets are generated and matched against the set of candidate itemsets Ck. We would like to stop as
soon as possible this costly matching procedure. Such early stopping has an important side-effect because, by
reducing the number of intersections between Ck and t, we also reduce the local counts i.count for some item
i 2 t, thus boosting the LkðiÞ pruning.

However, we cannot do it straightforwardly, we must be careful in identifying the proper time for the
early stopping, guaranteeing that necessary items are not deleted. In particular, as shown in the following
Example, we cannot simply stop as soon as we found an itemset X � t, X 2 Ck which does not satisfy the
constraint.

Example 12. Let t = {a,b,c,d,e, f,g,h} be a transaction in D, with associated prices h100,100,80,40,35,30,
20,15i, and let CCAM � avgðX :AÞP 70.

We could think to stop as soon as we found an itemset X � t, X 2 Ck which does not satisfy the constraint,
such as {ade}. This would not be correct, since we would not discover further valid itemsets like {bcf}.

Then, we could think to stop when no other interesting itemset Y � t; Y 2 CkjY � X ^ CCAMðY Þ exists.
This is the case of X = {bcg}, for which :9Y � X jCCAMðY Þ. But also in this way we would lose some valid
itemsets. In fact, stopping after {bcg}, we would have a local count of 2 for the item h (given by {abh} and
{ach}), and therefore h would be deleted because of its low local count, avoiding to discover the valid itemset
{abch} during the next iteration.

Our goal is to stop as soon as possible the counting procedure and, at the same time, to increase pruning
opportunities, guaranteeing that necessary items are not deleted. The stopping criterion we provide works as
follows (see Algorithm 4): when an itemsets X � t, X 2 Ck which does not satisfies the constraint is met (lines
4–5), its last item last(X) is recorded (line 6); afterwards if every other itemset Y � t, Y 2 Ckjfirst(Y) 	 last(X)
does not satisfy the constraint either then the counting procedure is stopped (lines 9–10), otherwise the stop-
ping criterion can be applied to another itemset X such that :CCAMðX Þ.

To prove the correctness of Algorithm 4, we must assure that, at the iteration k, there is no item i with low
i.count that will belong to some frequent valid itemset in the following iterations. This is done by the next
theorem.
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Theorem 3. The stopping criterion defined by Algorithm 4 is such that, after the counting procedure is applied to

a transaction t 2 D, for every item i 2 t we have that i:count < k ) 9= I : i 2 I ^ jI j > k ^ I 2 ThðCfreqÞ \ Th
ðCCAMÞ.

Proof. We prove by contradiction that no item i, belonging to a valid solution itemset I, will have a local
count i.count < k. First we note that by construction every item i 	 last(X) has a correct local count by con-
struction, because every candidate itemset Y subsuming last(X) is evaluated, and therefore we focus on items
i � last(X). Suppose that at the iteration k we have that i.count < k and that such valid and frequent itemset
I 3 i exists. There are two alternatives: either I 	 last(X) or I � last(X). In the former, since I is a frequent l-
itemset with l > k, there exist at least k frequent k-itemsets {Yji 2 Y ^ first(Y) 	 last(X)} which are subsets of I,
and therefore i.count P k, which is in contradiction with the hypothesis. In the latter, it must hold that
first(I) � last(X), but since we have that X does not satisfy CCAM, because of the item ordering I will not either,
and therefore I 62 ThðCCAMÞ which is again in contradiction with the hypothesis. h

As a special case of the above Theorem we exploit the following Lemma, which allows an immediate detec-
tion of a stopping itemset.

Lemma 1. If exists an itemset X such that X � t;X 2 Ck;:CCAMðX Þ and the items of X occur consecutively in t,

then the counting procedure can stop after the itemset X.

Proof. It is straightforward to see that since the items of X occur consecutively, then :9Y � t; Y 2
CkjfirstðY Þ 	 lastðX Þ ^ CCAMðY Þ, and therefore according to Theorem 3 the counting procedure can be
stopped after X. h
Algorithm 4. Counting Early Stopping

1: for all t 2 D do

2: invalidFound false

3: for all X 2 CkjX � t do

4: if :CCAMðX Þ then

5: if invalidFound = false then

6: Xlast  last(X)
7: invalidFound true
8: Yfirst  first(X)
9: if Yfirst > Xlast then

10: break {Stopping criterion met}
11: else

12: invalidFound false

13: . . . perform usual counting . . .
4.3. Post-counting reduction

At the end of the count and reduce phase, before writing the reduced dataset for the next iteration, we try to
repeatedly reduce every transaction t, pulling out singleton items that will never participate to a valid solution
itemset. The last item of a transaction t is the best candidate for deletion both when CCAM is defined over a
prefix decreasing or increasing function. Consider the usual transaction t = {a,b,c,d,e, f,g,h} and suppose to
be at the end of iteration 3. Before writing t in the dataset for the next iteration we wonder whether h will be
useful from now on. If such item is not useful when used together with the items with the best attribute values,
then it will be of no use within any other itemset. So we check if {abch} satisfy or not CCAM. If not, we are sure
that no 4-itemset containing h and supported by t will satisfy CCAM as well. However this is yet not enough to
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remove h from t. In fact, it could be possible that a larger itemset, for instance {abcdh}, satisfies CCAM. There-
fore, if k is the current iteration, what we have to check is that h cannot participate to any valid itemset of any
size larger than k. This process can be stopped when we rich the size l = h.count + 1 which is the maximum
possible size of a frequent itemset containing h and supported by t (line 12 of Algorithm 5). In our example
suppose that h.count = 5: we have only to check {abch}, {abcdh} and {abcdeh}.

We can tighten the above process, by joining to h only those items which have a sufficient local count. In
our example suppose that c.count = 3. We can be sure that c will not participate to any solution itemset of size
5 supported by t. Therefore we can skip {abcdh} and check {abdeh} (if d.count P 4 otherwise also d would be
skipped). This process can be early stopped. Suppose f is prefix decreasing, if it happens that an itemset
{X [ h} of length l has a value f(X [ h) smaller than the previous one with length l � 1, we are assured that
any other itemset {X [ h} with length > l will have a lower value of f, and therefore if no valid itemset sub-
suming i has not yet been found, we can stop the process. Symmetrically if f is prefix increasing (line 15 of
Algorithm 5).

Theorem 4 (Post-counting Reduction). Given a dataset D and a convertible anti-monotone constraint CCAM.

Let D0 be the reduced dataset produced by Algorithm 5. It holds that:
8X 2 ThðCCAMÞ; jX jP k : suppDðX Þ ¼ suppD0 ðX Þ
Proof. The proof is related to the above three paragraphs explaining the algorithm. Suppose CCAM is defined
over a prefix decreasing function f (the proof is similar if f is a prefix increasing function), and z is the last
element the transaction t sorted by decreasing order of the interesting attribute, and let us denote with tl

the l-prefix of t.
Algorithm 5. Post-counting Reduction

Input: D; k;CCAM

Output: D0

1: for all t 2 D do

2: repeat
3: delete false

4: z last(t)
5: l k

6: X take(t,l)
7: {takes first l items in t with count P l}
8: while ð:delete and : CCAMðfX [ zgÞÞ do

9: old_f_val f({X [ z})
10: l l + 1
11: X take(t, l)
12: if :ðk 6 jX j 6 z.count) then

13: delete true

14: else

15: if f({X [ z}) < (>)old_f_val then

16: delete true

17: if delete = true then

18: t tnz
19: until delete = false

20: D0 ¼ D0 [ t
Regarding the first part, it is clear that since X = tl is the l-itemset with the highest value of f, if f(X [ z) < v

then any other l + 1-itemset included in t and subsuming z will have an even lower value of f and will not sat-
isfy CCAM. Thus if :9X jf ðX [ zÞP v with jX [ zjP l where X = ti, then :9Y � t; jY j > l; z 2 Y jf ðY ÞP v and
therefore z can be removed. We can improve the above, by recalling that an item i 2 t cannot participate to
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any itemset of length l if it has a local count less than l. Therefore, for each prefix X of length l, we can take
into consideration only those items i 2 tji.count P l.

Finally, if f(ti [ z) < m and f(ti [ z) > f(ti+1 [ z) then every other itemset {tj>i+1 [ z} will have a value of f

smaller than m, because following items in tj have decreasing values. Again, since each {ti [ z} is the best
possible itemset, then there is no itemset I 2 t; z 2 I jCCAMðIÞ and therefore z can be removed. h
4.4. Advanced pruning techniques: experimental analysis

Experimental results presented in this Section confirm that the three proposed advanced pruning strategies
bring an additional speed-up when dealing with convertible constraints. In Fig. 4(a) we compared the pruning
power of the three proposed strategies with the Loose Anti-Monotone strategy. Only one of the three always
performs better than ExAMinerLAM, i.e. Post-counting Reduction, and the improvement is of about one order
of magnitude. As predictable, the four strategies all together (ExAMinerCAM) perform better than any single
one. Such increased pruning power leads to a lower computation time, as shown in Fig. 4(b). ExAMinerLAM is
one order of magnitude faster than FICA, while our advanced pruning techniques bring ExAMinerCAM to be
a b

c

Fig. 4. Advanced pruning techniques: experimental analysis results. (a) Dataset ACCIDENTS, r = 150,000, C � avgðX :SÞP 100; 000;
(b) dataset BMS-POS, r = 300, C � avgðX :SÞP m; (c) various datasets, various r, C � avgðX :SÞP m.
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two orders of magnitude faster than FICA. Finally, in Fig. 4(c) we plot the speed up factor of every algo-
rithm w.r.t. its own unconstrained version on different kinds of datasets. The figure shows that exploiting data-
reduction is fruitful on sparse datasets as well as dense datasets.

5. ExAMinerGEN : a generalized unifying framework

The objective of this section is to design a general algorithmic framework, which acts as computational engine
of an exploratory pattern discovery system, where the human analyst can impose her own focus and guidance on
the discovery process. Of course we want to let the analyst use any of the constraints we have described, but also,
any possible conjunction of them: simple constraints are basic building blocks of a powerful and expressive
query language. In this paper we have reviewed and characterized five main classes of constraints: anti-mono-

tone, monotone, succinct, convertible and loose anti-monotone. In Fig. 5 we report some interesting constraints
with their properties. Such properties should be used to speed up the underlying mining task and therefore
the knowledge extraction process itself. Unluckily, the mining strategies developed by previous works were
not compatible to be exploited at the same time. On the contrary, one of the most important advantages of
our framework is that, pushing constraints by means of data-reduction in a level-wise framework, we can exploit
different properties of constraints all together, and the total benefit is always greater than the sum of the indi-
vidual benefits. In other words, by means of data-reduction we exploit a real synergy of all constraints that the
user defines for the pattern extraction: each constraint does not only play its part in reducing the data, but this
reduction in turns strengthens the pruning power of the other constraints. Moreover data-reduction induces a
Fig. 5. Classification of commonly used constraints.
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pruning of the search space, that in turn strengthens future data reductions. Note that since many constraints
fall into more than one class, if we were able to exploit different strategies at the same time, we would gain dra-
matic performance benefits. In fact, all the properties that we exploit are orthogonal and thus can be combined.

Example 13. The constraint range(S.A) P v � max(S.A) � min(S.A) P v, is both monotone and loose anti-
monotone. Thus, when we mine frequent itemsets which satisfy such constraint we can exploit the benefit of
having together, in the same count&reduce procedure, the Cfreq-based data reductions of Proposition 2, the l-
reduction for monotone constraints (Proposition 1), and the reduction based on CLAM (Theorem 1).

Example 14. The constraint max(S.A) P v is monotone, succinct and loose anti-monotone. This means that
we can exploit all these properties by using it as a succinct constraint at candidate generation time as done in
Ng et al. [18], and using it as a monotone constraint and as a loose anti-monotone constraint by means of
data-reduction at counting time.

In the following we review how the various properties of constraints are exploited within our generalized
Apriori-like framework, whose pseudo-code is provided in Algorithm 6. Recall constraints can exhibit more
than one property, i.e., they can be in more than one class.

Anti-monotone constraints ðCAMÞ are exploited in conjunction with the frequency constraint, by not gener-
ating as candidate itemsets that have an infrequent subset (line 13);
Succinct constraints ðCSÞ can be pushed into the computation at generation time, by removing all those
invalid itemsets which will not be a subset of a valid itemset (line 13).
Succinct anti-monotone constraints ðCAMSÞ are exploited at preprocessing time by removing the itemsets
which does not satisfy them (line 2). After that the mining process can start without keeping into account
that the input dataset was modified, and however we are guaranteed the it will produce all and only valid
itemsets.
Monotone constraints ðCMÞ are exploited directly on the dataset. At any level of the level-wise visit, we can
remove transactions that do not satisfy monotone constraints (Proposition 1). This data reduction is imple-
mented by line 3 of Algorithm 7 and lines 11–12 of Algorithm 8.
Algorithm 6. ExAMinerGEN

Input: D; r;C /* where C ¼ CAM [ CM [ CS [ CAMS [ CCAM [ CLAM */
Output: ThðCfreq½D;r�Þ \ ThðCÞ
1: L1  I
2: C1  ffigji 2 I ^ CAMSðfigÞ ^ CAMðfigÞg
3: D1  pC1

ðDÞ
4: L1;D1  count first iterationðD1; r;C1;CMÞ
5: while L1 5 C1 do

6: C1 L1;
7: L1;D1  count first iterationðD1; r;C1;CMÞ
8: C2  generateðL1;CAM;CSÞ
9: for all i 2 L1 do V1[i] 0
10: k 2
11: while Ck 5 ; do

12: Lk;Dkþ1; V k  count&reduce
ðDk; r;CM;CCAM;CLAM;Ck; V k�1Þ
13: Ckþ1  generateðLk;CAM;CSÞ
14: k++
15: for (i = 0; i 6 k; i++) do

16: for all X 2 Li do

17: if CðX Þ then return X
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When we are in presence of just one convertible constraint in the given conjunction, we can exploit the

advanced pruning techniques described in Section 4, which require a particular reordering of the transac-
tions, and therefore they not always can be applied in presence of multiple convertible constraints.
Loose anti-monotone constraints ðCLAMÞ are pushed by exploiting the property in Theorem 1. The corre-
sponding data reduction is implemented by lines 33–34 of Algorithm 8.
Algorithm 7. count_first_iteration

Input: D; r;C;CM

Output: D1; L1

1: L1  ;;D1  ;
2: for all t 2 D do

3: if CMðtÞ then

4: for all i 2 t do i.count + +; if i.count + + = r then L1 L1 [ {i}
5: D1  D1 [ t
6: D1  pL1

ðD1Þ
Let us briefly describe the pseudo-code in Algorithm 6. Lines from 3 to 7 together with procedure
count_first_iteration (Algorithm 7), implement the ExAnte pre-processing. Lines from 11 to 14 implements
the typical central loop of the Apriori algorithm, where the generate procedure exploits succinctness and
anti-monotonicity to reduce the set of candidates, and the count&reduce* procedure exploits monotonicity,
convertibility and loose anti-monotonicity. Note that the count&reduce* procedure described in Algorithm
8 is obtained by embedding the loose antimonotonicity based data reduction, and the advanced pruning tech-
niques based on convertibility, into the count&reduce procedure described in Algorithm 2. Finally, lines from
15 to 17 implement the post-processing, where possible solution itemsets are check for satisfaction of those
constraints for which satisfaction is not already guaranteed.
Algorithm 8. count&reduce*

Input: Dk; r;CAM;CM;CCAM;CLAM;Ck; V k�1

Output: Lk;Dkþ1; V k

1: for all i 2 I do

2: Vk[i] 0
3: for all tuples t in Dk do

4: for all C 2 CLAM do

5: t.lam[C] false

6: for all i 2 t do

7: if Vk�1[i] < k � 1 then
8: t tni /* antimonotone pruning */
9: else

10: i.count 0
11: if :ð8C 2 CM : CðtÞÞ then

12: break; /* monotone pruning */
13: if : CCAMðprefixðt; kÞÞ then

14: break; /* convertible a-m pruning */
15: for all X 2 Ck, X � t do
16: if Counting Early Stopping Criterion holds then

17: break;
18: X.count++; t.count++
19: for all i 2 X do
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20: i.count++
21: for all C 2 CLAM do
22: t.lam[C] t.lam[C] OR C(X)
23: if X.count = = r then

24: Lk Lk [ {X}
25: for all i 2 X do

26: Vk[i] ++
27: t = Post Counting Reduction(t) /* convertible a-m pruning */
28: for all i 2 t do

29: if i.count < k then
30: t tni /* anti-monotone pruning */
31: if t.count < k + 1 then

32: break; /* anti-monotone pruning */
33: if : ð8C 2 CLAM : t:lam½C�Þ then

34: break; /* loose a-m pruning */
35: if jtjP k + 1 then

36: write t in Dkþ1
6. Conclusion and future work

Constraints in frequent pattern mining play a twofold essential role: they provide the user with guidance on
the knowledge discovery process, thus helping in focussing the search on interesting patterns; additionally,
they can be pushed in the computation in order to reduce the input data and the search space.

In this paper we have reviewed and extended the state-of-the-art of the constraints that can be pushed in a
frequent pattern computation. Many different kinds of constraints are pushed within a general level-wise
Apriori-like computation by means of data reduction techniques. The efficiency of the proposed techniques
is witnessed by excellent experimental results.

Our framework, by means of data-reduction, exploits a real synergy of all constraints that the user defines
for the pattern extraction: each constraint does not only play its part in reducing the data, but this reduction in
turns strengthens the pruning power of the other constraints. Moreover data-reduction induces a pruning of
the search space, and the pruning of the search space in turn strengthens future data reductions. The orthog-
onality of the exploited constraint pushing techniques has a twofold benefit: on one hand all the techniques
can be amalgamated together achieving a very efficient computation; on the other hand the framework can
be easily extended to handle other constraints. Another positive effect of adopting an Apriori-like algorithm,
is that in the implementation we can exploit all coding tricks and smart data structures that have been devel-
oped in the last decade for the Apriori algorithm.

We believe that this efficient computational framework is a step forward in the road to a realistic pattern
discovery systems. We are also aware that many issues remain open, and deserve further research.

• Pattern discovery is usually a highly iterative task: a mining session is usually made up of a series of queries
(exploration), where each new query adjusts, refines or combines the results of some previous queries. It is
important to develop techniques for incremental mining; i.e., reusing results of previous queries, in order to give
a faster response to the last query presented to the system, instead of performing again the mining from scratch.

• The exploratory nature of pattern discovery imposes to the system not only to return frequent feedbacks to
the user (which is achieved thanks to the efficient computational engine), but also to provide pattern visu-

alization and navigation tools. These tools should help the user in visualizing the continuous feedbacks form
the systems, allowing an easier and human-based identification of the fragments of interesting knowledge.
Such tools should also play the role of graphical querying interface: the action of browsing pattern visual-
ization should be tightly integrated (both by a conceptual and engineering point of view) with the action of
iteratively querying.
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• The user should be allowed to define her own application-dependent constraints.
• Another important issue is how to integrate condensed representations of patterns in the constraint-based

mining framework [4].
• Embedding our computational framework within a relational DBMS deserves a great effort: this issue is

strictly connected with many other open problems, for instance, how to store and index pattern discovery
queries results;

• Finally, we must develop a constraint-based mining framework for more complex kinds of patterns such as
sequences and graphs.

Our objective at Pisa KDD Laboratory, is to integrate the results of these investigations in a unified system
for exploratory constraint-based pattern discovery. A first prototype of such a system, named CONQUEST [6],
has been developed around the efficient mining engine described in this article.
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